Preview

Regulatory Research and Medicine Evaluation

Advanced search

Classification of Cell Therapy Products by Cell Manipulation Degree and Functions Performed: Analysis of International Regulatory Approaches

https://doi.org/10.30895/1991-2919-2024-14-5-533-546

Abstract

INTRODUCTION. The degree of processing (manipulation) of cells included in a cell product and the functions performed after administration (homologous/non-homologous use) determine the classification of the cell product as a transplant or an advanced therapy medicinal product (ATMP) and, hence, the regulatory aspects of the product’s life cycle. Currently, the legislation of the Eurasian Economic Union (EAEU) and the Russian Federation does not sufficiently explain the terms ‘minimal manipulation’ and ‘homologous/non-homologous use’, which may lead to the use of cell products with unproven safety and efficacy in humans.

AIM. This study aimed to compare Russian and international approaches to the interpretation of the terms ‘minimal manipulation’ and ‘homologous/non-homologous use’ for classifying cell products and determining their regulatory pathways, with stromal vascular fraction (SVF) products used as an example.

DISCUSSION. This article reviews and summarises the regulatory approaches of the Russian Federation, the EAEU, the United States (US), and the European Union (EU) that are based on the classification of cell products according to the degree of cell manipulation and the functions performed after administration. The authors have analysed and compared the regulatory acts and approaches of the countries under consideration, with SVF products as a case study. The article highlights general aspects of interpreting the terms ‘minimal manipulation’ and ‘homologous/ non-homologous use’ and demonstrates the difference in regulatory approaches across several countries, which lies in the classification of enzymatic processing and selective collection of cells as substantial or minimal manipulation.

CONCLUSIONS. The mechanism for regulating cell products depends on the degree of cell manipulation (substantial or minimal) and the intended use (homologous or non-homologous). A common principle adopted by regulatory agencies in the US, EU, EAEU, and Russia is to classify manipulation as minimal if the manipulated cells preserve their biological characteristics and physiological function. A defining characteristic of the homologous use of cells or tissues is their administration to perform their inherent functions in the body. In Russia, the regulatory acts for ATMPs and for transplants list the procedures classified as minimal manipulation. According to international standards, preparations based on minimally manipulated SVF cells are classified as ATMPs when used non-homologously. The lack of comprehensive and clear explanations of the terms ‘minimal manipulation’ and ‘homologous/non-homologous use’ in the legislation of the EAEU and the Russian Federation necessitates the development of relevant guidelines providing specific examples.

About the Authors

M. A. Vodyakova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Marina A. Vodyakova - Cand. Sci. (Pharm.).

8/2 Petrovsky Blvd, Moscow 127051



N. S. Pokrovsky
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Nikita S. Pokrovsky.

8/2 Petrovsky Blvd, Moscow 127051



I. S. Semenova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Irina S. Semenova - Cand. Sci. (Biol.).

8/2 Petrovsky Blvd, Moscow 127051



V. A. Merkulov
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Vadim A. Merkulov - Dr. Sci. (Med.), Prof.

8/2 Petrovsky Blvd, Moscow 127051



E. V. Melnikova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Ekaterina V. Melnikova - Cand. Sci. (Biol.).

8/2 Petrovsky Blvd, Moscow 127051



References

1. Melnikova EV, Goryaev AA, Savkina MV, Merkulova OV, Chaplenko AA, Rachinskaya OA, et al. International approaches to regulation of medicinal products containing viable human cells. BIOpreparations. Prevention, Diagnosis, Treatment. 2018;18(3):150–60 (In Russ.). https://doi.org/10.30895/2221-996X-2018-18-3-150-160

2. Marks PW. Clear evidence of safety and efficacy is needed for stromal vascular fraction products: Commentary on “Arguments for a different regulatory categorization and framework for stromal vascular fraction”. Stem Cells Dev. 2020;29(5):263–5. https://doi.org/10.1089/scd.2020.0011

3. Chisholm J, Von Tigerstrom B, Bedford P, Fradette J, Viswanathan S. Workshop to address gaps in regulation of minimally manipulated autologous cell therapies for homologous use in Canada. Cytotherapy. 2017;19(12):1400–11. https://doi.org/10.1016/j.jcyt.2017.08.015

4. Ejaz A, Yang KS, Venkatesh KP, Chinnapaka S, Kokai LE, Rubin JP. The impact of human lipoaspirate and adipose tissue-derived stem cells contact culture on breast cancer cells: implications in breast reconstruction. Int J Mol Sci. 2020;21(23):9171. https://doi.org/10.3390/ijms21239171

5. Dykstra JA, Facile T, Patrick RJ, Francis KR, Milanovich S, Weimer JM, et al. Concise review: fat and furious: harnessing the full potential of adipose-derived stromal vascular fraction. Stem Cells Transl Med. 2017;6(4):1096–108. https://doi.org/10.1002/sctm.16-0337

6. Zheng H, Zhang B, Chhatbar PY, Dong Y, Alawieh A, Lowe F, et al. Mesenchymal stem cell therapy in stroke: a systematic review of literature in pre-clinical and clinical research. Cell Transplant. 2018;27(12):1723–30. https://doi.org/10.1177/0963689718806846

7. Karina K, Rosliana I, Rosadi I, Schwartz R, Sobariah S, Afini I, et al. Safety of technique and procedure of stromal vascular fraction therapy: from liposuction to cell administration. Scientifica (Cairo). 2020;2020:2863624. https://doi.org/10.1155/2020/2863624

8. Bowles AC, Wise RM, Gerstein BY, Thomas RC, Ogelman R, Manayan RC, et al. Adipose stromal vascular fraction attenuates Th1 cell-mediated pathology in a model of multiple sclerosis. J Neuroinflammation. 2018;15(1):77. https://doi.org/10.1186/s12974-018-1099-3

9. Detiger SEL, Helder MN, Smit TH, Hoogendoorn RJW. Adverse effects of stromal vascular fraction during regenerative treatment of the intervertebral disc: observations in a goat model. Eur Spine J. 2015;24(9):1992–2000. https://doi.org/10.1007/s00586-015-3803-7

10. Kuriyan AE, Albini TA, Townsend JH, Rodriguez M, Pandya HK, Leonard RE, et al. Vision loss after intravitreal injection of autologous “stem cells” for AMD. N Engl J Med. 2017;376(11):1047–53. https://doi.org/10.1056/NEJMoa1609583

11. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15(6):641–8. https://doi.org/10.1016/j.jcyt.2013.02.006

12. Turner LG. US clinics marketing unproven and unlicensed adipose-derived autologous stem cell interventions. Regen Med. 2015;10(4):397–402. https://doi.org/10.2217/rme.15.10

13. Law L, Hunt CL, Van Wijnen AJ, Nassr A, Larson AN, Eldrige JS, et al. Office-based mesenchymal stem cell therapy for the treatment of musculoskeletal disease: a systematic review of recent human studies. Pain Med. 2019;20(8):1570–83. https://doi.org/10.1093/pm/pny256

14. Lalu MM, Mazzarello S, Zlepnig J, Dong YY (Ryan), Montroy J, McIntyre L, et al. Safety and efficacy of adult stem cell therapy for acute myocardial infarction and ischemic heart failure (SafeCell Heart): a systematic review and meta-analysis. Stem Cells Transl Med. 2018;7(12):857–66. https://doi.org/10.1002/sctm.18-0120

15. Dominici M, Nichols K, Srivastava A, Weiss DJ, Eldridge P, Cuende N, et al. Positioning a scientific community on unproven cellular therapies: the 2015 international society for cellular therapy perspective. Cytotherapy. 2015;17(12):1663–6. https://doi.org/10.1016/j.jcyt.2015.10.007

16. Brown JC, Shang H, Li Y, Yang N, Patel N, Katz AJ. Isolation of adipose-derived stromal vascular fraction cells using a novel point-of-care device: cell characterization and review of the literature. Tissue Eng Part C Methods. 2017;23(3):125–35. https://doi.org/10.1089/ten.tec.2016.0377

17. Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9(1):11–5. https://doi.org/10.1016/j.stem.2011.06.008

18. Carstens M, Haq I, Martinez-Cerrato J, Dos-Anjos S, Bertram K, Correa D. Sustained clinical improvement of Parkinson’s disease in two patients with facially-transplanted adipose-derived stromal vascular fraction cells. J Clin Neurosci. 2020;81:47–51. https://doi.org/10.1016/j.jocn.2020.09.001

19. Correa-Rotter R, García-Trabanino R. Mesoamerican nephropathy. Semin Nephrol. 2019;39(3):263–71. https://doi.org/10.1016/j.semnephrol.2019.02.004

20. Guo J, Nguyen A, Banyard DA, Fadavi D, Toranto JD, Wirth GA, et al. Stromal vascular fraction: a regenerative reality? Part 2: Mechanisms of regenerative action. J Plast Reconstr Aesthet Surg. 2016;69(2):180–8. https://doi.org/10.1016/j.bjps.2015.10.014

21. Johnson RJ, Wesseling C, Newman LS. Chronic kidney disease of unknown cause in agricultural communities. N Engl J Med. 2019;380(19):1843–52. https://doi.org/10.1056/NEJMra1813869

22. Nguyen A, Guo J, Banyard DA, Fadavi D, Toranto JD, Wirth GA, et al. Stromal vascular fraction: a regenerative reality? Part 1: Current concepts and review of the literature. J Plast Reconstr Aesthet Surg. 2016;69(2):170–9. https://doi.org/10.1016/j.bjps.2015.10.015

23. Wijkström J, González-Quiroz M, Hernandez M, Trujillo Z, Hultenby K, Ring A, et al. Renal morphology, clinical findings, and progression rate in Mesoamerican nephropathy. Am J Kidney Dis. 2017;69(5):626–36. https://doi.org/10.1053/j.ajkd.2016.10.036

24. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome­related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–44. https://doi.org/10.1038/s41564-020-0695-z

25. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20. https://doi.org/10.1056/NEJMoa2002032

26. Jiang S, Du L, Shi Z. An emerging coronavirus causing pneumonia outbreak in Wuhan, China: calling for developing therapeutic and prophylactic strategies. Emerg Microbes Infect. 2020;9(1):275–7. https://doi.org/10.1080/22221751.2020.1723441

27. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4. https://doi.org/10.1016/S0140-6736(20)30628-0

28. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5

29. Lindvall O. Treatment of Parkinson’s disease using cell transplantation. Phil Trans R Soc Lond B Biol Sci. 2015;370(1680):20140370. https://doi.org/10.1098/rstb.2014.0370

30. Shulman LM, Gruber-Baldini AL, Anderson KE, Fishman PS, Reich SG, Weiner WJ. The clinically important difference on the unified Parkinson’s disease rating scale. Arch Neurol. 2010;67(1):64–70. https://doi.org/10.1001/archneurol.2009.295

31. Horváth K, Aschermann Z, Kovács M, Makkos A, Harmat M, Janszky J, et al. Changes in quality of life in Parkinson’s disease: how large must they be to be relevant? Neuroepidemiology. 2017;48(1–2):1–8. https://doi.org/10.1159/000455863

32. Bhargava S, Cunha PR, Lee J, Kroumpouzos G. Acne scarring management: systematic review and evaluation of the evidence. Am J Clin Dermatol. 2018;19(4):459–77. https://doi.org/10.1007/s40257-018-0358-5

33. Connolly D, Vu HL, Mariwalla K, Saedi N. Acne scarring — pathogenesis, evaluation, and treatment options. J Clin Aesthet Dermatol. 2017;10(9):12–23. PMID: 29344322

34. Boen M, Jacob C. A review and update of treatment options using the acne scar classification system. Dermatol Surg. 2019;45(3):411–22. https://doi.org/10.1097/DSS.0000000000001765

35. Yao Y, Cai J, Zhang P, Liao Y, Yuan Y, Dong Z, et al. Adipose stromal vascular fraction gel grafting: a new method for tissue volumization and rejuvenation. Dermatol Surg. 2018;44(10):1278–86. https://doi.org/10.1097/DSS.0000000000001556

36. Amos PJ, Shang H, Bailey AM, Taylor A, Katz AJ, Peirce SM. IFATS collection: the role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype. Stem Cells. 2008;26(10):2682–90. https://doi.org/10.1634/stemcells.2008-0030

37. Arnberg F, Lundberg J, Olsson A, Samén E, Jaff N, Jussing E, et al. Intra-arterial administration of placenta-derived decidual stromal cells to the superior mesenteric artery in the rabbit: distribution of cells, feasibility, and safety. Cell Transplant. 2016;25(2):401–10. https://doi.org/10.3727/096368915X688191

38. Berishvili E, Kaiser L, Cohen M, Berney T, Scholz H, Floisand Y, Mattsson J. Treatment of COVID-19 pneumonia: the case for placenta-derived cell therapy. Stem Cell Rev Rep. 2021;17(1):63–70. https://doi.org/10.1007/s12015-020-10004-x

39. Bishop PD, Feiten LE, Ouriel K, Nassoiy SP, Pavkov ML, Clair DG, et al. Arterial calcification increases in distal arteries in patients with peripheral arterial disease. Ann Vasc Surg. 2008;22(6):799–805. https://doi.org/10.1016/j.avsg.2008.04.008

40. Bura A, Planat-Benard V, Bourin P, Silvestre J-S, Gross F, Grolleau J-L, et al. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy. 2014;16(2):245–57. https://doi.org/10.1016/j.jcyt.2013.11.011

41. Carstens MH, Correa D, Llull R, Gomez A, Turner E, Valladares LS. Subcutaneous reconstruction of hand dorsum and fingers for late sequelae of burn scars using adipose-derived stromal vascular fraction (SVF). CellR4. 2015;3(5):e1675.

42. Siennicka K, Zolocinska A, Stepien K, Lubina-Dabrowska N, Maciagowska M, Zolocinska E, et al. Adipose-derived cells (stromal vascular fraction) transplanted for orthopedical or neurological purposes: are they safe enough? Stem Cells Int. 2016;2016:5762916. https://doi.org/10.1155/2016/5762916

43. Lu J, Xu B, Hu J, Yu J, Kang J, Yu Y, et al. Autologous adipose-derived vascular stromal component injection offers a safe and effective method for treating knee osteoarthritis: a one-year double-blind, randomized controlled clinical trial. Preprint; 2023. https://doi.org/10.21203/rs.3.rs-3369095/v1

44. Goncharov EN, Koval OA, Bezuglov EN, Encarnacion Ramirez M, Engelgard M, Eremin II, et al. Stromal vascular fraction therapy for knee osteoarthritis: a systematic review. Medicina (Kaunas). 2023;59(12):2090. https://doi.org/10.3390/medicina59122090

45. Usuelli FG, Grassi M, Maccario C, Vigano M, Lanfranchi L, Alfieri Montrasio U, de Girolamo L. Intratendinous adipose-derived stromal vascular fraction (SVF) injection provides a safe, efficacious treatment for Achilles tendinopathy: results of a randomized controlled clinical trial at a 6-month follow-up. Knee Surg Sports Traumatol Arthrosc. 2018;26(7):2000–10. https://doi.org/10.1007/s00167-017-4479-9

46. Mazur S, Zołocińska A, Siennicka K, Janik-Kosacka K, Chrapusta A, Pojda Z. Safety of adipose-derived cell (stromal vascular fraction — SVF) augmentation for surgical breast reconstruction in cancer patients. Adv Clin Exp Med. 2018;27(8):1085–90. https://doi.org/10.17219/acem/70798

47. Pattayadeekul T, Pawcsuntorn T, Nararatwanchai T. The efficacy and safety of autologous stromal vascular fraction transplantation for infraorbital skin rejuvenation: a clinical prospective study. J Cosmet Dermatol. 2022;21(1):220–6. https://doi.org/10.1111/jocd.14069

48. Han X, Ji D, Liu Y, Hu S. Efficacy and safety of transplantation of autologous fat, platelet-rich plasma (PRP) and stromal vascular fraction (SVF) in the treatment of acne scar: systematic review and meta-analysis. Aesthetic Plast Surg. 2023;47(4):1623–32. https://doi.org/10.1007/s00266-023-03295-1

49. Roohaninasab M, Ahmadi M, Dehghani A, Zare S, Goodarzi A, Nouri M, et al. The investigation and comparison of the efficacy and safety of stromal vascular fraction (SVF), platelet rich plasma (PRP), and 1064-nm Q-switched Nd:YAG laser in reducing nanofat-treated infraorbital dark circles and wrinkles: a controlled blinded randomized clinical trial. Skin Res Technol. 2024;30(6):e13793. https://doi.org/10.1111/srt.13793


Supplementary files

1. Fig. 1. Algorithm for the classification of manipulations as minimal or substantial according to the Food and Drug Administration regulatory approach. HCT/P, human cells, tissues, and cellular and tissue-based products
Subject
Type Исследовательские инструменты
Download (1MB)    
Indexing metadata ▾

Review

For citations:


Vodyakova M.A., Pokrovsky N.S., Semenova I.S., Merkulov V.A., Melnikova E.V. Classification of Cell Therapy Products by Cell Manipulation Degree and Functions Performed: Analysis of International Regulatory Approaches. Regulatory Research and Medicine Evaluation. 2024;14(5):533-546. (In Russ.) https://doi.org/10.30895/1991-2919-2024-14-5-533-546

Views: 652


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-3062 (Print)
ISSN 3034-3453 (Online)