Preview

Regulatory Research and Medicine Evaluation

Advanced search

Detecting Elemental Impurities by Inductively Coupled Plasma Mass Spectrometry in Russian Radiopharmaceuticals

https://doi.org/10.30895/1991-2919-2025-15-4-434-443

Abstract

 

INTRODUCTION. Radiopharmaceutical manufacturers should assess potential negative impact of elemental impurities on the quality of their products using real data of their elemental contamination. Accumulating knowledge about medicinal products and their manufacturing process should start from the development stage and continue throughout the implementation stage until production finally ends.

AIM. This study aimed to monitor elemental impurities content in Russian radiopharmaceuticals using inductively coupled plasma mass spectrometry.

MATERIALS AND METHODS. The samples included 127 Russian radiopharmaceuticals obtained by the Scientific Center for Expert Evaluation of Medicinal Products during its statutory activities: fluorodeoxyglucose (18F), PSMA-1007 (18F), sodium iodide (131I), sodium iodohippurate (131I), iobenguane (123I), and sodium pertechnetate (99mTc). The content of Ag, Al, As, Au, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Ga, Ge, Hg, Ir, Li, Mn, Nb, Ni, Os, Pb, Pd, Pt, Rh, Ru, Sb, Se, Mo, Sn, Tl, V, W, and Zn was detected on the Agilent 7900 mass spectrometer.

RESULTS. Elemental impurities Ag, As, Au, Bi, Be, Cd, Co, Cr, Ga, Ge, Hg, Ir, Mo, Nb, Ni, Os, Pb, Pd, Pt, Rh, Ru, Sb, Se, Sn, Tl, V, and W were not detected in any of the tested radiopharmaceuticals. Al, Zn, and Cu mostly contributed to elemental contamination in almost all radiopharmaceuticals. Radiopharmaceuticals used for single-photon emission computed tomography (SPECT) contained significantly less elemental impurities compared to positron emission tomography (PET) radiopharmaceuticals.

CONCLUSIONS. The elements that mostly contaminate Russian radiopharmaceuticals are non-toxic or low-toxic (Al, Zn, Cu). These impurities should be monitored in case they negatively impact the quality of radiopharmaceuticals. In fluorodeoxyglucose (18F), elemental contamination heavily depends on the used buffer solution. In order to find out elemental contamination sources in the studied radiopharmaceuticals, an additional analysis of impurities in the raw materials, reagents and semi-products is indispensable at all technological stages.

About the Authors

Yu. N. Shvetsova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Yulia N. Shvetsova.

8/2 Petrovsky Blvd, Moscow 127051



A. A. Erina
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Alina A. Erina.

8/2 Petrovsky Blvd, Moscow 127051



V. M. Shchukin
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Viktor M. Shchukin - Cand. Sci. (Pharm.).

8/2 Petrovsky Blvd, Moscow 127051



N. E. Kuz'mina
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Natalia E. Kuz’mina - Dr. Sci. (Chem.).

8/2 Petrovsky Blvd, Moscow 127051



R. D. Ruziev
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Ramzes D. Ruziev - Cand. Sci. (Chem.).

8/2 Petrovsky Blvd, Moscow 127051



D. A. Pripadchev
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Dmitrii A. Pripadchev - Cand. Sci. (Chem.).

8/2 Petrovsky Blvd, Moscow 127051



M. A. Kuznetsov
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Mikhail A. Kuznetsov.

8/2 Petrovsky Blvd, Moscow 127051



References

1. Shchukin VM, Kuz’mina NE, Ruziev RD, et al. Pharmacopoeial requirements for elemental impurities in radiopharmaceuticals (review). Regulatory Research and Medicine Evaluation. 2025;15(4):421–33 (In Russ.). https://doi.org/10.30895/1991-2919-2025-751

2. Nurkenov SA, Baratova AA, Turikbayev K. Research of oncological diseases on the basis of 18F (FDG) and 99mTc. Bulletin of Kazakh National Women’s Teacher Training University. 2019;(4):53–60 (In Russ.). EDN: KAYSNM

3. Subbotin AS, Pronin AI, Odzharova AA, Komarova MA. Features of 18F-fluorodeoxyglucose uptake in multiple myeloma. Oncohematology. 2021;16(3):40–9 (In Russ.). https://doi.org/10.17650/1818-8346-2021-1 6-3-40-49

4. Long JZ, Jacobson MS, Hung JC. Comparison of FASTlab 18F-FDG production using phosphate and citrate buffer cassettes. J Nucl Med Technol. 2013;41(1):32–4. https://doi.org/10.2967/jnmt.112.112649

5. Lodi F, Boschi S. Quality control of PET radiopharmaceuticals. In: Khalil M, ed. Basic Science of PET Imaging. Springer Cham; 2016. P. 105–26. https://doi.org/10.1007/978-3-319-40070-9_5

6. Tavares AT, Martins PDA, Fukumori NTO, et al. Multielemental determination of trace elements in radiopharmaceuticals produced at the radiopharmacy center using ICP-OES technique. International Nuclear Atlantic Conference (INAC 2013). Recife, PE (Brazil); 2013.

7. Kilian K, Chabecki B, Kiec J, et al. Synthesis, quality control and determination of metallic impurities in 18F-fludeoxyglucose production process. Rep Pract Oncol Radiother. 2014;19(1):22–31. https://doi.org/10.1016/j.rpor.2014.03.001

8. Kilian K, Pęgier M, Pękal A, Pyrzyńska K. Distribution and separation of metallic and radionuclidic impurities in the production of 18F-fluorodeoxyglucose. J Radioanal Nucl Chem. 2016;307:1037–43. https://doi.org/10.1007/s10967-015-4328-6

9. Chochevska M, Velichkovska M, Lazareva MA, et al. Evaluation of factors with potential influence on [18F]FDG radiochemical synthesis yield. Appl Radiat Isot. 2023;199:110900. https://doi.org/10.1016/j.apradiso.2023.110900

10. Kumar R, Kumar A, Kumar A, et al. Significance of cartridges and resins used in a purification column during 18F-fluorodeoxyglucose synthesis. Indian J Nucl Med. 2022; 37(4):318–22. https://doi.org/10.4103/ijnm.ijnm_14_22

11. Brinkevich DI, Brinkevich SD, Baranovskii OA, et al. Long-lived radionuclides at production of 2-[18F]fluorodeoxyglucose. Medical Physics. 2018;(1):80–8 (In Russ.). EDN: XMGXJR

12. Ter-Ovanesov MD, Yagudaev DM, Anikanova EV, Medvedev KI. Oligometastatic prostate cancer: local treatment and metastasis-directed therapy. Cancer Urology. 2024;20(1):146–52 (In Russ.). https://doi.org/10.17650/1726-9776-2024-20-1-146-152

13. Okarvi SM. Recent developments of prostate-specific membrane antigen (PSMA)-specific radiopharmaceuticals for precise imaging and therapy of prostate cancer: an overview. Clin Transl Imaging. 2019;(7):189–208. https://doi.org/10.1007/s40336-019-00326-3

14. Leontyev AV, Rubtsova NA, Khalimon AI, et al. Application of radiolabeled ligands to the prostate-specific membrane antigen for determine localization of biochemical recurrence of prostate cancer by PET/CT (literature review). Medical Visualization. 2018;(3):81–97 (In Russ.). https://doi.org/10.24835/1607-0763-2018-3-81-97

15. Pastorino S, Riondato M, Uccelli L, et al. Toward the discovery and development of PSMA targeted inhibitors for nuclear medicine applications. Curr Radiopharm. 2020;13(1):63–79. https://doi.org/10.2174/1874471012666190729151540

16. Giovanella L, Avram AM, Ovčariček PP, Clerc J. Thyroid functional and molecular imaging. Presse Med. 2022;51(2):104116. https://doi.org/110.1016/j.lpm.2022.104116

17. Happel C, Kranert WT, Bockisch B, et al. The influence of thyroid hormone medication on intra-therapeutic half-life of 131I during radioiodine therapy of solitary toxic thyroid nodules. Sci Rep. 2022;12(1):3925. https://doi.org/10.1038/s41598-022-18170-3

18. Pathuri G, Hedrick AF, Awasthi V, et al. Synthesis and in vivo evaluation of ortho-[124I] iodohippurate for PET renography in healthy rats. Appl Radiat Isot. 2016;(115):251–5. https://doi.org/10.1016/j.apradiso.2016.07.002

19. Taylor AT. Nuclear medicine imaging techniques of the kidney. In: Ahmadzadehfar H, Biersack HJ, Freeman L, Zuckier L, eds. Clinical nuclear medicine. Springer Cham; 2020. Р. 323–55. https://doi.org/10.1007/978-3-030-39457-8_8

20. Chang MC, Peng CL, Chen CT, et al. Iodine-123 Metaiodobenzylguanidine (I-123 MIBG) in clinical applications: A comprehensive review. Pharmaceuticals (Basel). 2024;17(12):1563. https://doi.org/10.3390/ph17121563

21. Monzio Compagnoni G, Appollonio I, Ferrarese C. The role of 123I-MIBG cardiac scintigraphy in the differential diagnosis between dementia with Lewy bodies and Alzheimer’s disease. Neurol Sci. 2024;45(8):3599–609. https://doi.org/10.1007/s10072-024-07476-x

22. McErlain H, Andrews MJ, Watson AJ, et al. Ligand-enabled copper-mediated radioiodination of arenes. Org Lett. 2024;26(7):1528–32. https://doi.org/10.1021/acs.orglett.4c00356

23. Lv X, Yin L, Wu W, et al. Quantitative scintigraphy evaluated the relationship between 131I therapy and salivary glands function in DTC patients: A retrospective analysis. J Healthc Eng. 2022;7640405. https://doi.org/10.1155/2022/7640405

24. Chen YC, Chen HY, Hsu CH. Recent advances in salivary scintigraphic evaluation of salivary gland function. Diagnostics (Basel). 2021;11(7):1173. https://doi.org/10.3390/diagnostics11071173

25. MacPherson DS, Fung K, Cook BE, et al. A brief overview of metal complexes as nuclear imaging agents. Dalton Trans. 2019;48(39):14547–65. https://doi.org/10.1039/c9dt03039e

26. Ahmad M, Pervez S, Hussain S, et al. Evaluation of Pakgen 99mTc generators loaded with indigenous fission 99Mo. Radiochimica Acta. 2012;100(10):793–801. https://doi.org/10.1524/ract.2012.1945

27. Vallabhajosula S, Killeen RP, Osborne JR. Altered biodistribution of radiopharmaceuticals: role of radiochemical/pharmaceutical purity, physiological, and pharmacologic factors. Semin Nucl Med. 2010;40(4):220–41. https://doi.org/10.1053/j.semnuclmed.2010.02.004

28. Shukla SK. Effect of aluminium impurities in the generator-produced pertechnetate-99m ion on thyroid scintigrams. Eur J Nucl Med. 1977;2(3):137–41. https://doi.org/10.1007/bf00257269

29. Duflot VR, Kitaeva NK, Il’icheva NS. Technetium-99m generator with sulfo-carboxylated cation-exchanging protective layer and the method of its production. Patent of the Russian Federation No. 2443030 С2; 2012 (In Russ.). EDN: GEUXQE

30. Tryakin AA, Besova NS, Volkov NM, et al. General principles of antitumor drug therapy. Malignant Tumours. 2023;13(3s2-1):28–41 (In Russ.). https://doi.org/10.18027/2224-5057-2023-1 3-3s2-1-28-41


Supplementary files

Review

For citations:


Shvetsova Yu.N., Erina A.A., Shchukin V.M., Kuz'mina N.E., Ruziev R.D., Pripadchev D.A., Kuznetsov M.A. Detecting Elemental Impurities by Inductively Coupled Plasma Mass Spectrometry in Russian Radiopharmaceuticals. Regulatory Research and Medicine Evaluation. 2025;15(4):434-443. (In Russ.) https://doi.org/10.30895/1991-2919-2025-15-4-434-443

Views: 48


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-3062 (Print)
ISSN 3034-3453 (Online)