Preview

Regulatory Research and Medicine Evaluation

Advanced search

Assessment of functional safety of blood forming organs in research of toxicological properties of medicinal products (Review). Part 1. Features of the hematopoietic organs of laboratory animals. Mechanisms of hematotoxicity

https://doi.org/10.30895/1991-2919-2025-15-3-278-288

Abstract

INTRODUCTION. The blood contains a large quantity of active cells of the organism and is a basic target for potentially toxic substances. The regulatory documents of the Russian Federation and international recommendations provide a list of mandatory biochemical and hematological parameters, but they are insufficient for predicting drug-induced hepatotoxicity in vivo during preclinical studies. A review of new data on this issue and an update of the list of biomarkers will expand the capabilities for monitoring the condition of laboratory animals, enhance the sensitivity and specificity of assessing toxic effects on hematopoiesis in preclinical studies, and thereby contribute to improving the safety of medicinal products and the effectiveness of therapy. The review consists of two parts.

AIM. The study aimed to identify the differences between the hematopoietic organs of humans and laboratory animals in order to develop recommendations for preclinical studies using animal blood as a biomaterial.

DISCUSSION. The first part of the review shows the characteristics of the hematopoietic organs of humans and laboratory animals, indicating their characteristics compared to humans. It is discussed of mechanisms of hemotoxicity of various medicinal products. The paper discusses the mechanisms of development of hematotoxicity of drugs, among which 4 main ones can be distinguished: cytotoxic effects on hematopoietic progenitor cells; direct damage to mature cells;  indirect damage to blood or bone marrow cells due to undesirable immune reactions against and changes in the activity of cell surface receptors; change in the activity of enzyme systems necessary for the normal functioning of cells. Data on clinical blood analysis parameters of 8 species of laboratory animals: rodents (mouse, rat, hamster, guinea pig) and non-rodents (rabbit, macaque, pygmy pig, ferret) are summarized.

CONCLUSIONS. Some features in the structure and function of the hematopoietic organs compared to humans can lead to significant differences in the toxicological profile of the drug. It should be noted that a clinical blood test allows us to assess a significant number of manifestations of hematotoxicity of drugs that directly affect blood cells and their precursors. With an indirect effect of the medicinal product (through enzyme systems, effect on progenitor cells, appearance of antibodies, etc.), these data are insufficient and the use of additional markers is necessary in order to increase the predictive value of preclinical studies and the comparability of data with clinical studies.

 

About the Authors

N. M. Faustova
Research-and-manufacturing company “HOME OF PHARMACY”
Russian Federation

Natalia M. Faustova, Cand. Sci. (Chem.) 



A. E. Saloponova
Research-and-manufacturing company “HOME OF PHARMACY”
Russian Federation

Alina E. Saloponova

 3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad region 188663 



M. V. Miroshnikov
Research-and-manufacturing company “HOME OF PHARMACY”
Russian Federation

Michail V. Miroshnikov, Cand. Sci. (Med.)

 3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad region 188663 



M. N. Makarova
Research-and-manufacturing company “HOME OF PHARMACY”
Russian Federation

Marina N. Makarova, Dr. Sci. (Med.) 

 3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad region 188663 



V. G. Makarov
Research-and-manufacturing company “HOME OF PHARMACY”
Russian Federation

Valery G. Makarov, Dr. Sci. (Med.)

 3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad region 188663 



References

1. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–5. https://doi.org/10.1038/nrd1470

2. van der Worp HB, Howells DW, Sena ES, Porritt M, Rewell S, O’Collins V, et al. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7(3):e1000245. https://doi.org/10.1371/journal.pmed.1000245

3. Hoffmann D, Adler M, Vaidya VS, Rached E, Mulrane L, Gallagher WM, et al. Performance of novel kidney biomarkers in preclinical toxicity studies. Toxicol Sci. 2010;116(1):8–22. https://doi.org/10.1093/toxsci/kfq029

4. Campion S, Aubrecht J, Boekelheide K, Brewster DW, Vaidya VS, Anderson L. The current status of biomarkers for predicting toxicity. Expert Opin Drug Metab Toxicol. 2013;9(11):1391–408. https://doi.org/10.1517/17425255.2013.827170

5. Gwaltney-Brant S. Blood and bone marrow toxicity biomarkers. In: Gupta RC, ed. Biomarkers in toxicology. Academic Press; 2019. P. 361–71. https://doi.org/10.1016/B978-0-12-404630-6.00021-X

6. Wallace MA, Kormos TM, Pleil JD. Blood-borne biomarkers and bioindicators for linking exposure to health effects in environmental health science. J Toxicol Environ Health B Crit Rev. 2016;19(8):380–409. https://doi.org/10.1080/10937404.2016.1215772

7. Pleil JD. Categorizing biomarkers of the human exposome and developing metrics for assessing environmental sustainability. J Toxicol Environ Health B Crit Rev. 2012;15(4):264–80. https://doi.org/10.1080/10937404.2012.672148

8. Engalycheva GN, Syubaev RD. Relevant species selection for preclinical safety studies of medicines: A review. Safety and Risk of Pharmacotherapy. 2025;13(1):31–43 (In Russ.). https://doi.org/10.30895/2312-7821-2025-460

9. Vladimirskaya EB. Normal hematopoiesis and its regulation. Clinical Oncohematology. 2015;8(2):109–19 (In Russ.). EDN: TYMYAP

10. Tarrant JM. Blood cytokines as biomarkers of in vivo toxicity in preclinical safety assessment: considerations for their use. Toxicol Sci. 2010;117(1):4–16. https://doi.org/10.1093/toxsci/kfq134

11. Boehlen F, Clemetson KJ. Platelet chemokines and their receptors: What is their relevance to platelet storage and transfusion practice? Transfus Med. 2001;11(6):403–17. https://doi.org/10.1046/j.1365-3148.2001.00340.x

12. Terszowski G, Müller SM, Bleul CC, Blum C, Schirmbeck R, Reimann J, et al. Evidence for a functional second thymus in mice. Science. 2006;312(5771):284–7. https://doi.org/10.1126/science.1123497

13. Miller J. Investigating a second thymus in mice. Science. 2006;312(5780):1597–8. https://doi.org/10.1126/science.312.5780.1597c

14. Yaglova NV, Obernikhin SS. Morphofunctional changes in thymic offspring of mice in the period of puberty and in adults after single immunostimulatory effects of the parent organism in the early stages of pregnancy. Immunology. 2013;34(1):15–9 (In Russ.). EDN: PVGHBJ

15. Yarilin AA. Age-matched changes in the thymus and T-lymphocytes. Immunology. 2003;24(2):117 (In Russ.). EDN: OJQPVT

16. Vishnevskaya TYa, Abramova LL. Morphofunctional types of the spleen of different mammalian species. Proceedings of the Orenburg State Agrarian University. 2015;(6):247–9 (In Russ.). EDN: VDOPBP

17. Drozdova LI, Davydova YA, Kundryukova UI. Morphology of the spleen of mice in the is conditional-pure ecological zone. Agrarian Bulletin of the Urals. 2008;(11):39 (In Russ.). EDN: JXDUNL

18. Khasanov BB, Sultonova DB. Structural and functional features of the formation of the spleen in ontogenesis. Achievements of Science and Education. 2022;(7):53–60 (In Russ.). EDN: RVNQDY

19. Zaitsev VB, Fedorovskaya NS, Zheleznov LM. Morphometric features of the human spleen structure. Journal of New Medical Technologies. 2018;25(3):153–9 (In Russ.). EDN: OSVBTN

20. Taniguchi I, Sakurada A, Murakami G, Suzuki D, Sato M, Kohama GI. Comparative histology of lymph nodes from aged animals and humans with special reference to the proportional areas of the nodal cortex and sinus. Ann Anat. 2004;186(4):337–47. https://doi.org/10.1016/S0940-9602(04)80053-0

21. Aminova GG. Morphological characteristic of the protective structures of the mucous membrane of some human organs. Morphology. 2013;43(2):58–63 (In Russ.). EDN: PZIFRT

22. Brandtzaeg P. Immunobiology of the tonsils and adenoids. In: Mucosal immunology. Academic Press; 2015. P. 1985–2016. https://doi.org/10.1016/B978-0-12-415847-4.00103-8

23. Morozova EN. Morphological features of Peyer’s patches of the small intestine of rats after injection of cyclophosphamide. GISAP. Biology, Veterinary Medicine and Agricultural Sciences. 2013;(2):34–7. (In Russ.).

24. Khasanov BB. Modern ideas about the structural and functional features of Peyer’s plaques. Achievements of Science and Education. 2022;(5):78–87 (In Russ.). EDN: LAADCU

25. Postnikov SS, Kostylyova MN, Gratsianskaya AN, Ermilin AE. Drug induced haematotoxicity. Safety and Risk of Pharmacotherapy. 2016;(3):28–35. (In Russ.). EDN: WKNPVD

26. Majrakov G, Popkhristov P, eds. A medical disease. Sofia: Medicine and Physical Education; 1973 (In Russ.).

27. Ostroumova OD, Kochetkov AI, Pavleeva EE, Kravchenko EV. Drug-induced neutropenia and agranulocytosis. Safety and Risk of Pharmacotherapy. 2020;8(3):109–22 (In Russ.). https://doi.org/10.30895/2312-7821-2020-8-3-109-122

28. Soota K, Maliakkal B. Ribavirin induced hemolysis: a novel mechanism of action against chronic hepatitis C virus infection. World J Gastroenterol. 2014;20(43):16184–90. https://doi.org/10.3748/wjg.v20.i43.16184

29. Gupta RC, ed. Biomarkers in toxicology. Academic Press; 2019.

30. Ostroumova OD, Bliznyuk SA, Kochetkov AI, Komarovа AG. Drug-induced hemolytic anemia. Medical Alphabet. 2021;(1):49–56 (In Russ.). https://doi.org/10.33667/2078-5631-2021-1-49-56

31. Schmid M, Kreil A, Jessner W, Homoncik M, Datz C, Gangl A, et al. Suppression of haematopoiesis during therapy of chronic hepatitis C with different interferon alpha mono and combination therapy regimens. Gut. 2005;54(7):1014–20. https://doi.org/10.1136/gut.2004.057893

32. Sorokina AV, Alekseeva SV, Eremina NV, Durnev AD. Summary of clinical laboratory studies performed during preclinical safety evaluation of medicinal products (Part I: Haematological studies). The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2019;9(3):197–206. (In Russ.). https://doi.org/10.30895/1991-2919-2019-9-3-197-206

33. Lindstrom NM, Moore DM, Zimmerman K., Smith SA. Hematologic assessment in pet rats, mice, hamsters, and gerbils: blood sample collection and blood cell identification. Clin Lab Med. 2015;35(3):629–40. https://doi.org/10.1016/j.cll.2015.05.011

34. Kravchenko IN, Khokhlova ON, Kravchenko NN. Puzhalin AN, D’yachenko IA, Murashev AN. The hematological parameters of CD (Sprague Dawley) rats and CD 1 mice free of pathogenic flora are normal. Biomedicine. 2008;1(2):20–30 (In Russ.). EDN: NTSTSH

35. Wozniak DM, Kirchoff N, Hansen-Kant K, Sogoba N, Safronetz D, Prescott J. Hematology and clinical chemistry reference ranges for laboratory-bred natal multimammate mice (Mastomys natalensis). Viruses. 2021;13(2):187. https://doi.org/10.3390/v13020187

36. Miroshnikov MV, Kovaleva MA, Sultanova KT, Makarova MN. Variability of hematological blood parameters and establishment of reference intervals in preclinical studies. Part 1: rodents and rabbits. Laboratory Animals for Science. 2024;(4):35–58 (In Russ.). EDN: RGGENU

37. McKeon GP, Nagamine CM, Ruby NF, Luong RH. Hematologic, serologic, and histologic profile of aged Siberian hamsters (Phodopus sungorus). J Am Assoc Lab Anim Sci. 2011;50(3):308–16. PMID: 21640024

38. Spittler AP, Afzali MF, Bork SB, Burton LH, Radakovich LB, Seebart CA, et al. Age- and sex-associated differences in hematology and biochemistry parameters of Dunkin Hartley guinea pigs (Cavia porcellus). PLoS One. 2021;16(7):e0253794. https://doi.org/10.1371/journal.pone.0253794

39. Kitagaki M, Yamaguchi M, Nakamura M, Sakurada K, Suwa T, Sasa H. Age-related changes in haematology and serum chemistry of Weiser–Maples guinea pigs (Cavia porcellus). Lab Anim. 2005;39(3):321–30. https://doi.org/10.1258/0023677054307042

40. Zimmerman K, Moore DM, Smith SA. Hematological assessment in pet guinea pigs (Cavia porcellus): Blood sample collection and blood cell identification. Vet Clin North Am Exot Anim. 2015;18(1):33–40. https://doi.org/10.1016/j.cvex.2014.09.002

41. Fox JG, Otto GM, Whary MT, Anderson LC, Pritchett-Corning KR, eds. Laboratory animal medicine. Elsevier; 2015.

42. Leineweber C, Müller E, Marschang RE. Blood reference intervals for rabbits (Oryctolagus cuniculus) from routine diagnostic samples. Tierarztl Prax Ausg K Kleintiere Heimtiere. 2018;46(6):393–8. https://doi.org/10.1055/s-0038-1677403

43. Siegel A, Walton RM. Hematology and biochemistry of small mammals. In: Ferrets, Rabbits, and Rodents. Saunders; 2020. P. 569–82. https://doi.org/10.1016/B978-0-323-48435-0.00039-3

44. Özkan C, Kaya A, Akgü Y. Normal values of haematological and some biochemical parameters in serum and urine of New Zealand White rabbits. World Rabbit Sci. 2012;20(4):253–9. https://doi.org/10.4995/wrs.2012.1229

45. Miura N, Kawaguchi H, Nagasato T, Yamada T, Ito T, Izumi H, et al. Coagulation activity and white thrombus formation in the microminipig. In Vivo. 2013;27(3):357–61. PMID: 23606691

46. Kawaguchi H, Yamada T, Miura N, Takahashi Y, Yoshikawa T, Izumi H, et al. Reference values of hematological and biochemical parameters for the world smallest microminipigs. J Vet Med Sci. 2012;74(7):933–6. https://doi.org/10.1292/jvms.11-0571

47. Yeom SC, Cho SY, Park CG, Lee WJ. Analysis of reference interval and age-related changes in serum biochemistry and hematology in the specific pathogen free miniature pig. Lab Anim Res. 2012;28(4):245–53. https://doi.org/10.5625/lar.2012.28.4.245

48. Fudge AM. Laboratory medicine: Avian and exotic pets. Philadelphia: Saunders; 2000.

49. Park HK, Cho JW, Lee BS, Park H, Han JS, Yang MJ, et al. Reference values of clinical pathology parameters in cynomolgus monkeys (Macaca fascicularis) used in preclinical studies. Lab Anim Res. 2016;32(2):79–86. https://doi.org/10.5625/lar.2016.32.2.79

50. Zeng XC, Yang CM, Pan XY, Yao YS, Pan W, Zhou C, et al. Effects of fasting on hematologic and clinical chemical values in cynomolgus monkeys (Macaca fascicularis). J Med Primatol. 2011;40(1):21–6. https://doi.org/10.1111/j.1600-0684.2010.00444.x

51. Andrade MC, Ribeiro CT, Silva VF, Molinaro EM, Gonçalves MA, Marques MA, et al. Biologic data of Macaca mulatta, Macaca fascicularis, and Saimiri sciureusused for research at the Fiocruz primate center. Mem Inst Oswaldo Cruz. 2004;99(6):581–9. PMID: 15558168

52. Koo BS, Lee DH, Kang P, Jeong KJ, Lee S, Kim K, et al. Reference values of hematological, biochemical parameters in young–adult cynomolgus monkey (Macaca fascicularis), and rhesus monkey (Macaca mulatta) anesthetized with ketamine hydrochloride. Lab Anim Res. 2019;35:7. https://doi.org/10.1186/s42826-019-0006-0

53. Wang H, Ni YY, Si W, Li YJ, Yan Y. Reference data of clinical chemistry, haematology and blood coagulation parameters in juvenile cynomolgus monkeys (Macaca fascicularis). Vet Med. 2012;57(5):233–8. https://doi.org/10.17221/5953-vetmed


Supplementary files

1. Tables 3, 4 and tables 1, 2 translations
Subject
Type Исследовательские инструменты
Download (1MB)    
Indexing metadata ▾

Review

For citations:


Faustova N.M., Saloponova A.E., Miroshnikov M.V., Makarova M.N., Makarov V.G. Assessment of functional safety of blood forming organs in research of toxicological properties of medicinal products (Review). Part 1. Features of the hematopoietic organs of laboratory animals. Mechanisms of hematotoxicity. Regulatory Research and Medicine Evaluation. 2025;15(3):278-288. (In Russ.) https://doi.org/10.30895/1991-2919-2025-15-3-278-288

Views: 109


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-3062 (Print)
ISSN 3034-3453 (Online)