Standardisation of the method of residual organic solvent determination (review)
https://doi.org/10.30895/1991-2919-2024-14-6-655-662
Abstract
INTRODUCTION. An important quality attribute of medicines and excipients is the content of residual organic solvents (ROS). The general chapter on ROS (1.1.0008) of the State Pharmacopoeia of the Russian Federation (Ph. Rus.) does not provide analytical procedures for ROS identification, limit tests, and quantitative determination. This impedes the standardisation of approaches to the control of ROS.
AIM. This study aimed to analyse global pharmacopoeial practices for and methodological approaches to the control of ROS in order to prepare a draft general chapter on ROS.
DISCUSSION. According to the comparative analysis of the requirements for the control of ROS of the European Pharmacopoeia, the United States Pharmacopoeia, the Pharmacopoeia of the Eurasian Economic Union, and the Ph. Rus., the current Ph. Rus. general chapter lacks a description of chromatographic systems, and this description should be provided. The validation requirements for the relevant test procedures in neither of the analysed pharmacopoeias include an exhaustive list of equipment characteristics that are necessary and sufficient to satisfy all analytical conditions.
CONCLUSIONS. It is reasonable to harmonise the Ph. Rus. general chapter on ROS (1.1.0008) with global pharmacopoeial approaches to ROS determination by gas chromatography. The authors recommend supplementing the draft general chapter on ROS with analytical procedures for ROS identification, limit tests, and quantitative determination.
Keywords
About the Authors
O. G. KornilovaRussian Federation
Olga G. Kornilova, Dr. Sci. (Pharm.)
8/2 Petrovsky Blvd, Moscow 127051
E. A. Smiryagin
Russian Federation
Egor A. Smiryagin
8/2 Petrovsky Blvd, Moscow 127051,
20 Geroev Panfilovtsev St., Moscow 125480
V. L. Bagirova
Russian Federation
Valeria L. Bagirova, Dr. Sci. (Pharm.), Professor
8/2 Petrovsky Blvd, Moscow 127051
M. A. Sumtsov
Russian Federation
Mikhail А. Sumtsov, Cand. Sci. (Pharm.)
8/2 Petrovsky Blvd, Moscow 127051
References
1. Matveeva OA. Control of residual organic solvents in active substances. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2022;12(3):241–3 (In Russ.). https://doi.org/10.30895/1991-2919-2022-12-3-241-243
2. B’Hymer C. Residual solvent testing: a review of gas-chromatographic and alternative techniques. Pharm Res. 2003;20(3):337–44. https://doi.org/10.1023/A:1022693516409
3. Neugodova NP, Stepanyuk EO, Sapozhnikova GA, Sakanyan EI, Ryabtseva MS. Current approaches to the abnormal toxicity test. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2020;10(2):82–8 (In Russ.). https://doi.org/10.30895/1991-2919-2020-10-2-82-88
4. Grodowska K, Parczewski A. Analytical methods for residual solvents determination in pharmaceutical products. Acta Pol Pharm. 2010;67(1):13–26. PMID: 20210075.
5. Rao SS, Vijayalakshmi A. Analytical method development and validation of glipizide to determine residual solvents by head space-gas chromatography. Res J Pharm Technol. 2021;14(5):2440–4. https://doi.org/10.52711/0974-360X.2021.00429
6. Noorbasha K, Shaik AR. Determination of residual solvents in paclitaxel by headspace gas chromatography. Futur J Pharm Sci. 2021;7:40. https://doi.org/10.1186/s43094-021-00186-7
7. Zou L, Guo X, McElderry JD. Platform headspace gas chromatography method for high-throughput determination of residual solvents in pharmaceutical materials. J Pharm Biomed Anal. 2023;229:115349. https://doi.org/10.1016/j.jpba.2023.115349
8. Rodinkov OV, Bugaichenko AS, Moskvin LN. Static headspace analysis and its current status. J Anal Chem. 2020;75(1):1–17. https://doi.org/10.1134/S106193482001013X
9. Rodinkov OV. Current trends in the development of head-space gas chromatography analysis. Analytics. 2021;11(1):30–9 (In Russ.). https://doi.org/10.22184/2227-572X.2021.11.1.30.39
10. Vitenberg AG, Konopelko LA. Gas-chromatographic headspace analysis: metrological aspects. J Anal Chem. 2011;66(5):438–57. https://doi.org/10.1134/S106193481103018X
11. Kolb B, Ettre LS. Static headspace — gas chromatography: theory and practice. John Wiley & Sons; 2006. https://doi.org/10.1002/0471914584
12. Sithersingh MJ, Snow NH. Headspace gas chromatography. In: Gas chromatography. Elsevier; 2021. P. 251–65. https://doi.org/10.1016/B978-0-12-820675-1.00012-5
13. Cheng C, Liu S, Mueller BJ, Yan Z. A generic static headspace gas chromatography method for determination of residual solvents in drug substance. J Chromatography A. 2010;1217(41):6413–21. https://doi.org/10.1016/j.chroma.2010.08.016
14. Shvets AA, Sumtsov MA. Influence of the injection system configuration on head-space gas chromatography test results (comparative study). Journal of Applied Chemistry. 2024;97(4):268–76 (In Russ.). https://doi.org/10.31857/S0044461824040017
15. Schurig V. Use of derivatized cyclodextrins as chiral selectors for the separation of enantiomers by gas chromatography. Ann Pharm Fr. 2010;68(2):82–98. https://doi.org/10.1016/j.pharma.2009.11.004
16. Betzenbichler G, Huber L, Kräh S, Morkos ML, Siegle A, Trapp O. Chiral stationary phases and applications in gas chromatography. Chirality. 2022;34(5):732–59. https://doi.org/10.1002/chir.23427
17. del Barrio MA, Hu J, Zhou P, Cauchon N. Simultaneous determination of formic acid and formaldehyde in pharmaceutical excipients using headspace GC/MS. J Pharm Biomed Anal. 2006;41(3):738-43. https://doi.org/10.1016/j.jpba.2005.12.033
Supplementary files
Review
For citations:
Kornilova O.G., Smiryagin E.A., Bagirova V.L., Sumtsov M.A. Standardisation of the method of residual organic solvent determination (review). Regulatory Research and Medicine Evaluation. 2024;14(6):655-662. (In Russ.) https://doi.org/10.30895/1991-2919-2024-14-6-655-662