Practical Aspects of Assessing Toxic Lesions of the Peripheral Nervous System in Preclinical Studies in Rodents: A Review
https://doi.org/10.30895/1991-2919-2024-14-3-265-282
Abstract
INTRODUCTION. In the current practice of preclinical safety studies of pharmacologically active substances, standard neurotoxicity assessment procedures are mainly aimed at diagnosing higher nervous activity and behavioural disorders. However, it is the structures of the peripheral nervous system that are particularly susceptible to drug-induced neurotoxicity, which renders these structures an easy target and leads to a high incidence of neurotoxic side effects. These circumstances dictate the importance of refining methodological approaches to the assessment of toxic injury in the peripheral nervous system.
AIM. The study aimed to analyse the current methodological level of clinical and functional tests for assessing the toxic effects of pharmacologically active substances on the structures of the peripheral nervous system, as well as to formulate practical recommendations for using these tests in preclinical studies in rodents.
DISCUSSION. Rodents are considered the optimal test system for preclinical studies of pharmacologically active substances, but it is impossible to reproduce the entire neurological examination that is conducted to identify clinical equivalents of neurotoxicity in humans using these animals. This article presents a systematic approach to using available diagnostic tests to increase the translatability of data. The article briefly describes the neurological deficits due to adverse drug reactions in humans, as well as the main toxidromes that can also occur in animals. Based on a literature review and experience, the authors provide practical recommendations for performing basic tests to study the strength and tone of muscles, the state of physiological reflexes, the coordination of movements, and various types of sensitivities in rodents. The article provides a brief overview of the diagnostic utility of electrophysiological testing for identifying toxic damage to the peripheral nervous system. The following tests are recommended as a minimum list of primary screening techniques for detecting neurotoxic side effects in study animals: a resting posture assessment, the beam walking test, the horizontal bar test, the digit abduction score assay, the tail flick test, and the Preyer reflex test.
CONCLUSIONS. The results of a comprehensive assessment of neurological deficits in rodent experiments should be analysed from a clinically relevant perspective— that is, with a focus on topical diagnosis and common pathological process components. It is advisable to verify the pathological process at the level of the peripheral nervous system using a set of electrophysiological techniques.
About the Authors
N. S. IlinskiiRussian Federation
Nikita S. Ilinskii, Cand. Sci. (Med.)
4 Lesoparkovaya St., St Petersburg 195043
M. A. Tyunin
Russian Federation
Mikhail A. Tyunin, Cand. Sci. (Med.)
4 Lesoparkovaya St., St Petersburg 195043
S. V. Chepur
Russian Federation
Sergey V. Chepur, Dr. Sci. (Med.), Professor
4 Lesoparkovaya St., St Petersburg 195043
V. A. Pugach
Russian Federation
Viktoria A. Pugach, Cand. Sci. (Biol.)
4 Lesoparkovaya St., St Petersburg 195043
V. A. Myasnikov
Russian Federation
Vadim A. Myasnikov, Cand. Sci. (Med.)
4 Lesoparkovaya St., St Petersburg 195043
References
1. Kutsenko SA Fundamentals of toxicology: a scientific and methodological publication. St Petersburg: Foliant; 2004 (In Russ.). EDN: QKMWIB
2. Kryshen KL, Moshkov AE, Demyanovskiy MN, Kovaleva MA. Safety pharmacology study of medicines used for febrile syndrome management in children. Safety and Risk of Pharmacotherapy. 2020;8(3):151–9 (In Russ.). https://doi.org/10.30895/2312-7821-2020-8-3-151-159
3. Han KS, Woo DH. Classification of advanced me thods for evaluating neurotoxicity. Mol Cell Toxicol. 2021;17(4):377–83. https://doi.org/10.1007/s13273-021-00161-6
4. Slater C. Diverse aspects of vulnerability at the neuromuscular junction. Brain. 2012;135(4):997–8. https://doi.org/10.1093/brain/aws057
5. Stubbs EB Jr. Targeting the blood-nerve barrier for the management of immune-mediated peripheral neuropathies. Exp Neurol. 2020;331:113385. https://doi.org/10.1016/j.expneurol.2020.113385
6. Sheikh S, Alvi U, Soliven B, Rezania K. Drugs that induce or cause deterioration of myasthenia gravis: an update. J Clin Med. 2021;10(7):1537. https://doi.org/10.3390/jcm10071537
7. Jones MR, Urits I, Wolf J, Corrigan D, Colburn L, Peterson E, et al. Drug-induced peripheral neuropathy: a narrative review. Curr Clin Pharmacol. 2020;15(1):38–48. https://doi.org/10.2174/1574884714666190121154813
8. Misra UK, Kalita J. Toxic neuropathies. Neurol India. 2009;57(6):697–705. https://doi.org/10.4103/0028-3886.59463
9. Pellacani C, Eleftheriou G. Neurotoxicity of antineoplastic drugs: mechanisms, susceptibility, and neuroprotective strategies. Adv Med Sci. 2020;65(2):265–85. https://doi.org/10.1016/j.advms.2020.04.001
10. Grisold W, Carozzi VA. Toxicity in peripheral nerves: an overview. Toxics. 2021;9(9):218. https://doi.org/10.3390/toxics9090218
11. Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite M, et al. Lessons learned from the fate of Astra-Zeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov. 2014;13(6):419–31. https://doi.org/10.1038/nrd4309
12. Chi LH, Burrows AD, Anderson RL. Can preclinical drug development help to predict adverse events in clinical trials? Drug Discov Today. 2022;27(1):257–68. https://doi.org/10.1016/j.drudis.2021.08.010
13. Masjosthusmann S, Barenys M, El-Gamal M, Geerts L, Gerosa L, Gorreja A, et al. Literature review and appraisal on alternative neurotoxicity testing methods. EFSA Supporting Publications. 2018;15(4):1410E. https://doi.org/10.2903/sp.efsa.2018.en-1410
14. Chinn GA, Pearn ML, Vutskits L, Mintz CD, Loepke AW, Lee JJ et al. Standards for preclinical research and publications in developmental anaesthetic neurotoxicity: expert opinion statement from the SmartTots preclinical working group. Br J Anaesth. 2020;124(5):585–93. https://doi.org/10.1016/j.bja.2020.01.011
15. Shih HP, Zhang X, Aronov AM. Drug discovery effectiveness from the standpoint of therapeutic mechanisms and indications. Nat Rev Drug Discov. 2017;17(1):19–33. https://doi.org/10.1038/nrd.2017.194
16. Aleksandrov IV, Egorova EI, Vasina EYu, Novikov VK, Matyko PG, Galagudza MM. Animal experiments in the era of translational medicine. What would they be? Translational Medicine. 2017;4(2):52–70 (In Russ.). https://doi.org/10.18705/2311-4495-2017-4-2-52-70
17. Llorens J, Li AA, Ceccatelli S, Suñol C. Strategies and tools for preventing neurotoxicity: to test, to predict and how to do it. Neurotoxicology. 2012;33(4):796–804. https://doi.org/10.1016/j.neuro.2012.01.019
18. Cashman CR, Höke A. Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci Lett. 2015;596:33–50. https://doi.org/10.1016/j.neulet.2015.01.048
19. Hauser S, ed. Harrison’s Neurology in Clinical Medicine. San Francisco: McGraw-Hill; 2010.
20. Wasinska-Borowiec W, Abri Aghdam K, Matias Saari J, Grzybowski A. An updated review on the most common agents causing toxic optic neuropathies. Current Pharm Des. 2017;23(4):586–95. https://doi.org/10.2174/1381612823666170124113826
21. Lindhard Madsen M, Du H, Ejskjær N, Jensen P, Madsen J, Dybkær K. Aspects of vincristine-induced neuropathy in hematologic malignancies: a systematic review. Cancer Chemother Pharmacol. 2019;84(3):471–85. https://doi.org/10.1007/s00280-019-03884-5
22. Odinak MM, Dyskin DE. Clinical diagnostics in neurology. St Petersburg: SpetsLit; 2010 (In Russ.). EDN: QLVPQP
23. Tilson HA. Behavioral indices of neurotoxicity: what can be measured? Neurotoxicol Teratol. 1987;9(6):427–43. https://doi.org/10.1016/0892-0362(87)90055-9
24. Schönfeld LM, Dooley D, Jahanshahi A, Temel Y, Hendrix S. Evaluating rodent motor functions: which tests to choose? Neurosci Biobehav Rev. 2017;83:298–312. https://doi.org/10.1016/j.neubiorev.2017.10.021
25. van Dellen A, Blakemore C, Deacon R, York D, Hannan AJ. Delaying the onset of Huntington’s in mice. Nature. 2000;404:721–22. https://doi.org/10.1038/35008142
26. Deacon RM. Measuring motor coordination in mice. J Vis Exp. 2013;75:e2609. https://doi.org/10.3791/2609
27. Voronina TA, Seredenin SB. Methodological guidelines for the study of the tranquilizing (anxiolytic) effect of pharmacological substances. In: Khabriev RU, ed. Guidelines for the experimental (preclinical) study of new pharmacological substances. Moscow: Meditsina; 2005 (In Russ.). EDN: QCIIOB
28. Akhapkina VI, Voronina TA. Study of the anti-stroke effect of phenotropil in a rat hemorrhagic stroke model (post-traumatic intracerebral hematoma). Nervous Diseases. 2006;(1):37–42 (In Russ.). EDN: OOKJEX
29. Brooks SP, Dunnett SB. Tests to assess motor phenotype in mice: a user’s guide. Nat Rev Neurosci. 2009;10(7):519–29. https://doi.org/10.1038/nrn2652
30. Takeshita H, Yamamoto K, Nozato S, Inagaki T, Tsuchimochi H, Shirai M, et al. Modified forelimb grip strength test detects aging-associated physiological decline in skeletal muscle function in male mice. Sci Rep. 2017;(7):42323. https://doi.org/10.1038/srep42323
31. Mintz EL, Passipieri JA, Lovell DY, Christ GJ. Applications of in vivo functional testing of the rat tibialis anterior for evaluating tissue engineered skeletal muscle repair. J Vis Exp. 2016;(116):54487. https://doi.org/10.3791/54487
32. Chiu CS, Weber H, Adamski S, Rauch A, Gentile MA, Alves SE. Non-invasive muscle contraction assay to study rodent models of sarcopenia. BMC Musculoskelet Disord. 2011;12:246. https://doi.org/10.1186/1471-2474-12-246
33. Chicheva MM, Vikhareva EV, Maltsev AV, Ustyugov AA. Evolution of methods for assessing the motor function of laboratory rodents — neurodegenerative diseases models. Biomed Chem Res Meth. 2018;1(3):e00030 (In Russ.). https://doi.org/10.18097/bmcrm00030
34. Hsieh TH, Tsai JY, Wu YN, Hwang IS, Chen TI, Chen JJJ. Time course quantification of spastic hypertonia following spinal hemisection in rats. Neuroscience. 2010;167(1):185–98. https://doi.org/10.1016/j.neuroscience.2010.01.064
35. Ilinskiy NS, Tyunin MA, Matrosova MO. Methodological approaches to the assessment of paralytic syndrome of toxic genesis in experiments on rodents. Laboratory Animals for Science. 2021;(3):71–4 (In Russ.). https://doi.org/10.29296/2618723X-2021-03-09
36. Aoki KR. A comparison of the safety margins of botulinum neurotoxin serotypes A, B, and F in mice. Toxicon. 2001;39(12):1815–20. https://doi.org/10.1016/s0041-0101(01)00101-5
37. Broide RS, Rubino J, Nicholson GS, Ardila MC, Brown MS, Aoki KR, et al. The rat Digit Abduction Score (DAS) assay: a physiological model for assessing botulinum neurotoxininduced skeletal muscle paralysis. Toxicon. 2013;71:18–24. https://doi.org/10.1016/j.toxicon.2013.05.004
38. Nishitani A, Yoshihara T, Tanaka M, Kuwamura M, Asano M, Tsubota Y, et al. Muscle weakness and impaired motor coordination in hyperpolarization-activated cyclic nucleotide-gated potassium channel 1-deficient rats. Exp Anim. 2020;69(1):11–7. https://doi.org/10.1538/expanim.19-0067
39. Turner PV, Pang DS, Lofgren JL. A review of pain assessment methods in laboratory rodents. Comp Med. 2019;69(6):451–67. https://doi.org/10.30802/AALAS-CM-19-000042
40. Deuis JR, Dvorakova LS, Vetter I. Methods used to evaluate pain behaviors in rodents. Front Mol Neurosci. 2017;10:284. https://doi.org/10.3389/fnmol.2017.00284с
41. Modi AD, Parekh A, Pancholi YN. Evaluating pain behaviours: widely used mechanical and thermal methods in rodents. Behav Brain Res. 2023;446:114417. https://doi.org/10.1016/j.bbr.2023.114417
42. Bohic M, Pattison LA, Jhumka ZA. Mapping the neuroethological signatures of pain, analgesia, and recovery in mice. Neuron. 2023;111(18):2811–2830.e8. https://doi.org/10.1016/j.neuron.2023.06.008
43. Presto P, Ji G, Junell R, Griffin Z, Neugebauer V. Fear extinction-based inter-individual and sex differences in pain-related vocalizations and anxiety-like behaviors but not nocifensive reflexes. Brain Sci. 2021;11(10):1339. https://doi.org/10.3390/brainsci11101339
44. Palazzo E, Marabese I, Gargano F, Guida F, Belardo C, Maione S. Methods for evaluating sensory, affective and cognitive disorders in neuropathic rodents. Curr Neuropharmacol. 2021;19(6):736–46. https://doi.org/10.2174/1570159X18666200831153117
45. Chao D, Tran H, Hogan QH, Pan B. Analgesic dorsal root ganglion field stimulation blocks both afferent and efferent spontaneous activity in sensory neurons of rats with monosodium iodoacetate-induced osteoarthritis. Osteoarthritis Cartilage. 2022;30(11):1468–81. https://doi.org/10.1016/j.joca.2022.08.008
46. Bondarenko DA, Dyachenko IA, Skobtsov DI, Murashev AN. In vivo models of studying of analgetic activity. Biomedicine. 2011;(2):84–94 (In Russ.). EDN: NVYEMF
47. Liu Q, Liu J, Guo M. Comparison of retinal degeneration treatment with four types of different mesenchymal stem cells, human induced pluripotent stem cells and RPE cells in a rat retinal degeneration model. J Transl Med. 2023;21(1):910. https://doi.org/10.1186/s12967-023-04785-1
48. Gaillard D, Stratford JM. Measurement of behavioral taste responses in mice: two-bottle preference, lickometer, and conditioned taste-aversion tests. Curr Protoc Mouse Biol. 2016;6(4):380–407. https://doi.org/10.1002/cpmo.18
49. McFadden SL, Simmons AM, Erbe C, Thomas JA. Behavioral and physiological audiometric methods for animals. In: Erbe C, Thomas JA, eds. Exploring animal behavior through sound. Springer; 2022. https://doi.org/10.1007/978-3-030-97540-1_10
50. Arevalo N. Open-source JL olfactometer for awake behaving recording of brain activity for mice engaged in olfactory tasks. In: Paredes RG, Portillo W, Bedos M, eds. Animal models of reproductive behavior. New York: Humana; 2023. https://doi.org/10.1007/978-1-0716-3234-5_6
51. Kimura J. Electrodiagnosis in diseases of nerve and muscle: principles and practice. Oxford University Press; 2013. https://doi.org/10.1093/med/9780199738687.001.0001
52. Tyunin MA, Ilinskii NS, Gogolevskii AS, Kruchinin EG, Gladkikh VD, Matseichik VA, Matrosova MO. Electrophysiological methods for the diagnosis of disorders of neuromuscular transmission in acute poisoning with organophosphorus compounds. Russian Military Medical Journal. 2020;341(10):11–9 (In Russ.). EDN: NSYNCD
Supplementary files
Review
For citations:
Ilinskii N.S., Tyunin M.A., Chepur S.V., Pugach V.A., Myasnikov V.A. Practical Aspects of Assessing Toxic Lesions of the Peripheral Nervous System in Preclinical Studies in Rodents: A Review. Regulatory Research and Medicine Evaluation. 2024;14(3):265-282. (In Russ.) https://doi.org/10.30895/1991-2919-2024-14-3-265-282