Chemical Composition and Antioxidant Activity of Ganoderma lingzhi and Ganoderma lucidum Fruiting Body Extracts
https://doi.org/10.30895/1991-2919-2024-609
Abstract
INTRODUCTION. Ganoderma spp. have been used as a traditional oriental medicine and a bioactive dietary supplement. These fungi are a promising source of effective antioxidants. Currently, there is no regulatory framework to control the quality of this herbal drug and its bioactive components in the Russian Federation and the Republic of Belarus. Therefore, it is essential to study the chemical composition and pharmacological activity spectrum of G. lingzhi and G. lucidum extracts.
AIM. The aim of this study was to determine the chemical composition and antioxidant activity of G. lingzhi and G. lucidum fruiting body extracts.
MATERIALS AND METHODS. The study focused on pure cultures of G. lingzhi and G. lucidum obtained from the fungal species collection of the Forest Institute of the National Academy of Sciences of Belarus. Fungal biomass was grown using two substrates, including alder sawdust (1–3 mm fraction) and oak shavings (5–10 mm fraction). The fungal biomass was extracted using repeated maceration with 70% ethanol. The study tested the free radical-scavenging activity of the extracts in reactions with the stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the radical cation derived from 2,2’-azinobis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS). The chemical composition was analysed by high-performance liquid chromatography–mass spectrometry (HPLC–MS). The assays for phenols, steroids, and triterpenes used spectrophotometry.
RESULTS. The extract of G. lucidum strain 334 cultivated on the alder substrate demonstrated the highest free radical-scavenging activity (IC50=3.1±0.2 μg/mL (DPPH), IC50=3.7±0.2 μg/mL (ABTS)), the highest phenolic content (326.2±16.5 µmol/g), and the highest triterpene content (2.00±0.11 mmol/g) of all the studied extracts. The antioxidant activity of the extracts of G. lingzhi and G. lucidum may be attributed to the content of ganoderic acid D, lucidenic acid D, naringenin, and other phenolic compounds.
CONCLUSION. The high yield of extracts with a significant radical-scavenging activity makes artificially cultivated G. lingzhi and G. lucidum mushrooms a promising source of natural antioxidants.
About the Authors
H. I. HarbatsevichBelarus
Hleb I. Harbatsevich, Cand. Sci. (Chim.), Associate Professor
83 Dzerzhinsky Ave, Minsk 220116
L. S. Zenevich
Belarus
Liliana S. Zenevich
1 Academician Kurchatov St., Minsk 220045
I. R. Batalova
Belarus
Irina R. Batalova
1 Academician Kurchatov St., Minsk 220045
S. A. Kovalenko
Belarus
Snezhana A. Kovalenko, Cand. Sci. (Agr.)
71 Proletarskaya St., Gomel 246050
P. M. Bychkovsky
Belarus
Pavel M. Bychkovsky, Cand. Sci. (Chim.), Associate Professor
1 Academician Kurchatov St., Minsk 220045
References
1. Cabarroi-Hernández M, Villalobos-Arámbula AR, Torres-Torres MG, Decock C, Guzmán-Dávalos L. The Ganoderma weberianum-resinaceum lineage: multilocus phylogenetic analysis and morphology confirm G. mexicanum and G. parvulum in the Neotropics. MycoKeys 2019;59:95–131. https://doi.org/10.3897/MYCOKEYS.59.33182
2. Moncalvo J-M. Molecular systematics of Ganoderma: what is Reishi? Int J Med Mushrooms. 2005:353–4. https://doi.org/10.1615/INTJMEDMUSHROOMS.V7.I3.160
3. Baby S, Johnson AJ, Govindan B. Secondary metabolites from Ganoderma. Phytochemistry. 2015;114:66–101. https://doi.org/10.1016/J.PHYTOCHEM.2015.03.010
4. Cao Y, Wu SH, Dai YC. Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”. Fungal Divers. 2012;56:49–62. https://doi.org/10.1007/s13225-012-0178-5
5. Galappaththi MCA, Patabendige NM, Premarathne BM, Hapuarachchi KK, Tibpromma S, Dai DQ. A review of Ganoderma triterpenoids and their bioactivities. Biomol. 2022;13:24–35. https://doi.org/10.3390/biom13010024
6. Chan WK, Cheung CCH, Law HKW, Lau YL, Chan GCF. Ganoderma lucidum polysaccharides can induce human monocytic leukemia cells into dendritic cells with immuno-stimulatory function. J Hematol Oncol. 2008;1:9. https://doi.org/10.1186/1756-8722-1-9
7. Kladar N V., Gavarić NS, Božin BN. Ganoderma: insights into anticancer effects. Eur J Cancer Prev. 2016;25:462–71. https://doi.org/10.1097/CEJ.0000000000000204
8. Paydary K, Khaghani P, Emamzadeh-Fard S, Alinaghi SAS, Baesi K. The emergence of drug resistant HIV variants and novel anti-retroviral therapy. Asian Pac J Trop Biomed. 2013;3:515–24. https://doi.org/10.1016/S2221-1691(13)60106-9
9. Kamra A, Bhatt AB, Evaluation of antimicrobial and antioxidant activity of Ganoderma lucidum extracts against human pathogenic. Int J Pharm Sci. 2012;2:359–62.
10. Jia J, Zhang X, Hu YS, Wu Y, Wang QZ, Li NN, et al. Evaluation of in vivo antioxidant activities of Ganoderma lucidum polysaccharides in STZ-diabetic rats. Food Chem. 2009;115:32–6. https://doi.org/10.1016/j.foodchem.2008.11.043
11. Lin JM, Lin CC, Chen MF, Ujiie T, Takada A. Radical scavenger and antihepatotoxic activity of Ganoderma formosanum, Ganoderma lucidum and Ganoderma neo-japonicum. J Ethnopharmacol. 1995;47:33–41. https://doi.org/10.1016/0378-8741(95)01251-8
12. Lee JM, Kwon H, Jeong H, Lee JW, Lee SY, Baek SJ, et al. Inhibition of lipid peroxidation and oxidative DNA damage by Ganoderma lucidum. Phytother Res. 2001;15:245–9. https://doi.org/10.1002/ptr.830
13. Chen DH, Shiou WY, Wang KC, Huang SY, Shie YT, Tsai CM, et al. Chemotaxonomy of triterpenoid pattern of HPLC of Ganoderma lucidum and Ganoderma tsugae. J Chinese Chem Soc. 1999;46:47–51. https://doi.org/10.1002/jccs.199900006
14. Zhou X, Lin J, Yin Y, Zhao J, Sun X, Tang K. Ganodermataceae: natural products and their related pharmacological functions. Am J Chin Med. 2007;35:559–74. https://doi.org/10.1142/S0192415X07005065
15. Mau JL, Lin HC, Chen CC. Non-volatile components of several medicinal mushrooms. Food Res Int. 2001;34:521–6. https://doi.org/10.1016/S0963-9969(01)00067-9
16. Van der Hem LG, Van der Vliet JA, Bocken CF, Kino K, Hoitsma AJ, Tax WJ. Ling Zhi-8. Studies of a new immunomodulating agent. Transplantation. 1995;60(5):438–43. PMID: 7676490
17. Thakur A, Rana M, Lakhanpal TN, Ahmad A, Khan MI. Purification and characterization of lectin from fruiting body of Ganoderma lucidum: lectin from Ganoderma lucidum. Biochim Biophys Acta. 2007;1770:1404–12. https://doi.org/10.1016/j.bbagen.2007.05.009
18. Li DW, Liu M, Leng YQ, Hu JF, Deng S, Leng AJ, et al. Lanostane triterpenoids from Ganoderma lucidum and their inhibitory effects against FAAH. Phytochemistry. 2022;203:113339. https://doi.org/10.1016/j.phytochem.2022.113339
19. Rajkapoor B, Burkan ZE, Senthilkumar R. Oxidants and human diseases: role of antioxidant medicinal plants — a review. Pharmacologyonline. 2010;1:1117–31.
20. Ali SS, Kasoju N, Luthra A, Singh A, Sharanabasava H, Sahu A, et al. Indian medicinal herbs as sources of antioxidants. Food Res Int. 2008;41:1–15. https://doi.org/10.1016/j.foodres.2007.10.001
21. Kovalenko SA, Nazarova OM, Lubyanova VM. Diversity of Ganoderma lingzhi and G. lucidum strains in the collection fund of the Forest Institute of the National Academy of Sciences of Belarus. Problems of Forest Science and Forestry. 2022. Vol. 82. P. 215–27 (In Russ.).
22. White TJ. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR protocols: a guide to methods and applications. New York: Academic Press Inc; 1990. P. 315–22. http://dx.doi.org/10.1016/b978-0-12-372180-8.50042-1
23. Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 1999;299:152–78. https://doi.org/10.1016/S0076-6879(99)99017-1
24. Hiai S, Oura H, Nakajima T. Color reaction of some sapogenins and saponins with vanillin and sulfuric acid. Planta Med. 1976;29:116–22. https://doi.org/10.1055/s-0028-1097639
25. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199–200. http://dx.doi.org/10.1038/1811199a0
26. Dong Q, He D, Ni X, Zhou H, Yang H. Comparative study on phenolic compounds, triterpenoids, and antioxidant activity of Ganoderma lucidum affected by different drying methods. J Food Meas Charact. 2019;13:3198–205. https://doi.org/10.1007/s11694-019-00242-0
27. Rashmi R, Magesh SB, Ramkumar KM, Suryanarayanan S, SubbaRao MV. Antioxidant potential of naringenin helps to protect liver tissue from streptozotocin-induced damage. Reports Biochem Mol Biol. 2018;7:76. PMID: 30324121
28. Yuan H, Xu Y, Luo Y, Zhang JR, Zhu XX, Xiao JH. Ganoderic acid D prevents oxidative stress-induced senescence by targeting 14-3-3ε to activate CaM/CaMKII/NRF2 signaling pathway in mesenchymal stem cells. Aging Cell. 2022;21:e13686. https://doi.org/10.1111/ACEL.13686
29. Lagouri V. Lipophilic antioxidants. Lipids Ski Heal. 2015:301–10. https://doi.org/10.1007/978-3-319-09943-9_20
30. Olorunnisola O.S. Biochemical and histological investigation on the protective effect of poly-herbal extract in high salt diet-fed male Wistar rats. Phytomedicine Plus. 2021;1(4):100116. https://doi.org/10.1016/j.phyplu.2021.100116
31. Jia J. Evaluation of in vivo antioxidant activities of Ganoderma lucidum polysaccharides in STZ-diabetic rats. Food Chem. 2009;115(1):32. https://doi.org/10.1016/j.foodchem.2008.11.043
32. Oluba OM, Akpor OB, Adebiyi FD, Josiah SJ, Alabi OO, Shoyombo AO, Olusola AO. Effects of co-administration of Ganoderma terpenoid extract with chloroquine on inflammatory markers and antioxidant status in Plasmodium berghei-infected mice. J Integr Med. 2020;18(6):522–9. https://doi.org/10.1016/j.joim.2020.08.002
Supplementary files
![]() |
1. Fig. 1. Total ion chromatograms (mass spectrometry detection, full scan, negative ion mode, m/z: 120–1000): a, G. lingzhi extract (strain 333, oak substrate); b, G. lucidum extract (strain 335, oak substrate); c, G. lingzhi extract (strain 333, alder substrate). Analysis conditions: chromatographic column C18 Kinetex 150 mm × 2.1 mm × 2.6 μm (Phenomenex), elution with a mixture of 0.5% acetic acid and acetonitrile in gradient mode, flow rate 0.4 mL/min, column temperature 25 °C, injection volume 15 μL | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(411KB)
|
Indexing metadata ▾ |
![]() |
2. Fig. 2. Chromatograms of G. lucidum extract (strain 335, oak substrate) for selected molecular ions: a, naringenin; b, 12-hydroxyganoderic acid C2; c, 3-acetylganoderic acid K; d, lingzhine D; e, lucidenic acid N; f, lucidenic acid A; g, ganoderic acid A; h, ganoderic acid H. Analysis conditions: chromatographic column C18 Kinetex 150 mm × 2.1 mm × 2.6 μm (Phenomenex), elution with a mixture of 0.5% acetic acid and acetonitrile in gradient mode, flow rate 0.4 mL/min, column temperature 25 °C, injection volume 15 μL, mass spectrometric detection | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(580KB)
|
Indexing metadata ▾ |
![]() |
3. Fig. 4. Mass spectra of identified compounds: a, lucidenic acid N; b, lucidenic acid A; c, ganoderic acid A; d, ganoderic acid H | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(399KB)
|
Indexing metadata ▾ |
![]() |
4. Table 5. Qualitative and semi-quantitative composition of Ganoderma spp. extracts | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(375KB)
|
Indexing metadata ▾ |
Review
For citations:
Harbatsevich H.I., Zenevich L.S., Batalova I.R., Kovalenko S.A., Bychkovsky P.M. Chemical Composition and Antioxidant Activity of Ganoderma lingzhi and Ganoderma lucidum Fruiting Body Extracts. Regulatory Research and Medicine Evaluation. 2024;14(6):686-697. (In Russ.) https://doi.org/10.30895/1991-2919-2024-609