Modern methods for identification and quantification of cardiac glycosides
https://doi.org/10.30895/1991-2919-2023-13-4-567-577
Abstract
Scientific relevance. Cardiac glycosides have been used in medicine for over two centuries. Current studies suggest that biologically active substances from this group can be used to treat not only heart conditions but also viral infections, cancers, and other diseases. Therefore, quality control methods for cardiac glycosides are becoming increasingly relevant.
Aim. Based on a review of Russian and international quality standards, as well as up-to-date scientific data, this study aimed to identify promising methods for the identification and quantification of cardiac glycosides in herbal drugs and herbal medicinal products, as well as to evaluate the possibility of substituting physicochemical methods for biological methods.
Discussion. The methods that are currently used to standardise cardiac glycosides are either not selective or require laboratory animals (biological test systems). According to a study of pharmacopoeial methods for the identification of cardiac glycosides in herbal drugs and herbal medicinal products, chemical identification tests and thin-layer chromatography continue to be relevant. Quantitative testing of herbal drugs and extracts uses biological and non-selective (spectrophotometry) methods, whereas chromatography is described only in general and individual monographs for herbal drug preparations containing individual cardiac glycosides and medicinal products containing these preparations. Upon analysing quality standards and scientific publications, the authors identified potentially promising methods for the quantification of cardiac glycosides in herbal drugs, herbal drug preparations, and herbal medicinal products, namely chromatographic methods.
Conclusions. Reverse-phase high-performance liquid cjromatography (HPLC) with spectrophotometric detection is the most suitable method for pharmacopoeial analysis. The development of an HPLC-based analytical procedure to determine the cardiac glycoside content will provide an opportunity to advance from biological or non-selective methods to more ethical and selective up-to-date techniques.
Keywords
About the Authors
O. V. EvdokimovaRussian Federation
Olga V. Evdokimova, Dr. Sci. (Pharm.), Associate Professor
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
A. V. Beketova
Russian Federation
Anastasia V. Beketova, Сand. Sci. (Pharm.)
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
O. A. Naumova
Russian Federation
Olga A. Naumova, Сand. Sci. (Pharm.)
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
I. V. Klinkova
Russian Federation
Irina V. Klinkova
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
T. B. Shemeryankina
Russian Federation
Tatiana B. Shemeryankina, Cand. Sci. (Pharm.)
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
L. A. Ladygina
Russian Federation
Liana A. Ladygina
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
K. S. Bushchik
Russian Federation
Kristina S. Bushchik
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
References
1. Ribeiro WLC, Macedo ITF, Santos JML, Oliveira EF, Camurça-Vasconcelos ALF, Paula HCB, et al. Activity of chitosan-encapsulated Eucalyptus staigeriana essential oil on Haemonchus contortus. Exp Parasitol. 2013;135(1):24–9. https://doi.org/10.1016/j.exppara.2013.05.014
2. Rietbrock N, Woodcock B. Two hundred years of foxglove therapy Digitalis purpurea 1 785–1985. Trends Pharmacol Sci. 1985;6:267–9. https://doi.org/10.1016/0165-6147(85)90123-3
3. Wade OL. Digoxin 1785-1985. I. Two hundred years of digitalis. J Clin Hosp Pharm. 1986;11(1):3–9. https://doi.org/10.1111/j.1365-2710.1986.tb00822.x
4. El-Seedi HR, Khalifa SAM, Taher EA, Farag MA, Saeed A, Gamal M, et al. Cardenolides: Insights from chemical structure and pharmacological utility. Pharmacol Res. 2019;141:123–75. https://doi.org/10.1016/j.phrs.2018.12.01
5. Dukelskaya NK, Garmashova IV, Davydova MV. Comparative analysis of the products of cardiac glycosides used in modern pharmacotherapy. Russian Military Medical Academy Report. 2020;39(S3–4):82–5 (In Russ.). EDN: SNCYHH
6. Kanji S, MacLean RD. Cardiac glycoside toxicity: more than 200 years and counting. Crit Care Clin. 2012;28(4):527–35. https://doi.org/10.1016/j.ccc.2012.07.005
7. Morsy N. Cardiac glycosides in medicinal plants. In: El- Shemy HA, ed. Aromatic and Medicinal Plants — Back to Nature. London: InTechOpen; 2017. https://doi.org/10.5772/65963
8. Botelho AFM, Pierezan F, Soto-Blanco B, Melo MM. A review of cardiac glycosides: Structure, toxicokinetics, clinical signs, diagnosis and antineoplastic potential. Toxicon. 2019;158:63–8. https://doi.org/10.1016/j.toxicon.2018.11.429
9. Pongrakhananon V. Anticancer properties of cardiac glycosides. In: Rangel L, ed. Cancer Treatment — Conventional and Innovative Approaches. London: Intechopen; 2013. https://doi.org/10.5772/55381
10. Gurevich MA, Gavrilin AA. Cardiac glycosides in up-to- date clinical practice. Аlmanac of Clinical Medicine. 2014;(35):101–5 (In Russ.). https://doi.org/10.18786/2072-0505-2014-35-101-105
11. Mareev VYu, Ageev FT, Arutyunov GP, Koroteev AV, Mareev YuV, Ovchinnikov AG, et al. SEHF, RSC AND RSMSIM National guidelines on CHF diagnostics and treatment (fourth revision). Heart Failure. 2013;14(7):372–9 (In Russ.). EDN: VHDBDT
12. Philippe G, Angenot L. Recent developments in the field of arrow and dart poisons. J. Ethnopharmacol. 2005;100(1–2):85–91. https://doi.org/10.1016/j.jep.2005.05.022
13. Bertol W, Rigotto C, Maia de Pádua R, Kreis W, Monte Barardi CR, Braga FC, Simões CMO. Antiherpes activity of glucoevatromonoside, a cardenolide isolated from a Brazilian cultivar of Digitalis lanata. Antiviral Res. 2011;92(1):73–80. https://doi.org/10.1016/j.antiviral.2011.06.015
14. Zhyvoloup A, Melamed A, Anderson I, Planas D, Lee C-H, Kriston-Vizi J, et al. Digoxin reveals a functional connection between HIV-1 integration preference and T-cell activation. PLoS Pathog. 2017;13(7):e1006460. https://doi.org/10.1371/journal.ppat.1006460
15. Wong RW, Balachandran A, Ostrowski MA, Cochrane A. Digoxin suppresses HIV-1 replication by altering viral RNA processing. PLoS Pathog. 2013;9(3):e1003241. https://doi.org/10.1371/journal.ppat.1003241
16. Grosso F, Stoilov P, Lingwood C, Brown M, Cochrane A. Suppression of adenovirus replication by cardiotonic steroids. J Virol. 2017;91(3):e01623-16. https://doi.org/10.1128/jvi.01623-16
17. Wang JKT, Portbury S, Thomas MB, Barney S, Ricca DJ, Morris DL, et al. Cardiac glycosides provide neuroprotection against ischemic stroke: Discovery by a brain slice-based compound screening platform. Proc Natl Acad Sci USA. 2006;103(27):10461–6. https://doi.org/10.1073/pnas.0600930103
18. Penniyainen VA, Plakhova VB, Podzorova SA, Terekhin SG, Krylov BV. Possible physiological function of endogenous ouabain. Integrative Physiology. 2021;2(1):96–101 (In Russ.). https://doi.org/10.33910/2687-1270-2021-2-1-96-101
19. Kulikov A, Eva A, Kirch U, Boldyrev A, Scheiner-Bobis G. Ouabain activates signaling pathways associated with cell death in human neuroblastoma. Biochim Biophys Acta. 2007;1768(7):1691–702. https://doi.org/10.1016/j.bbamem.2007.04.012
20. Lin SY, Chang HH, Lai YH, Lin CH, Chen MH, Chang GC, et al. Digoxin suppresses tumor malignancy through inhibiting multiple Src-related signaling pathways in non-small cell lung cancer. PLoS One. 2015;10(5):e0123305. https://doi.org/10.1371/journal.pone.0123305
21. Mijatovic T, Mathieu V, Gaussin JF, De Neve N, Ribaucour F, Van Quaquebeke, et al. Cardenolide-induced lysosomal membrane permeabilization demonstrates therapeutic benefits in experimental human non-small cell lung cancers. Neoplasia. 2006;8(5):402–12. https://doi.org/10.1593/neo.05850
22. Mijatovic T, De Beeck АО, Van Quaquebeke EV, Dewelle J, Darro F, de Launoit Y, Kiss R. The cardenolide UNBS1450 is able to deactivate nuclear factor κB-mediated cytoprotective effects in human non-small cell lung cancer cells. Mol Cancer Ther. 2006;5(2):391–9. https://doi.org/10.1158/1535-7163.mct-05-0367
23. Frese S, Frese-Schaper M, Andres AC, Miescher D, Zumkehr B, Schmid RA. Cardiac glycosides initiate Apo2L/TRAIL-induced apoptosis in non-small cell lung cancer cells by up-regulation of death receptors 4 and 5. Cancer Res. 2006;66(11):5867–74. https://doi.org/10.1158/0008-5472.can-05-3544
24. Johansson S, Lindholm P, Gullbo J, Larsson R, Bohlin L, Claeson P, et al. Cytotoxicity of digitoxin and related cardiac glycosides in human tumor cells. Anticancer Drugs. 2001;12(5):475–83. https://doi.org/10.1097/00001813-200106000-00009
25. McConkey DJ, Lin Y, Nutt LK, Ozel HZ, Newman RA. Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells. Cancer Res. 2000;60(14):3807–12. PMID: 10919654
26. Huang YT, Chueh SC, Teng CM, Guh JH. Investigation of ouabain-induced anticancer effect in human androgen- independent prostate cancer PC-3 cells. Biochem Pharmacol. 2004;67(4):727–33. https://doi.org/10.1016/j.bcp.2003.10.013
27. Yeh JY, Huang WJ, Kan SF, Wang PS. Effects of bufalin and cinobufagin on the proliferation of androgen dependent and independent prostate cancer cells. Prostat. 2003;54(2):112–24. https://doi.org/10.1002/pros.10172
28. Chen JQ, Contreras RG, Wang R, Fernandez SV, Shoshani L, Russo IH, et al. Sodium/potasium ATPase (Na+, K+-ATPase) and ouabain/related cardiac glycosides: A new paradigm for development of anti-breast cancer drugs. Breast Cancer Res Treat. 2006;96(1):1–15. https://doi.org/10.1007/s10549-005-9053-3
29. Bielawski К, Winnicka К, Bielawska А. Inhibition of DNA topoisomerases I and II, and growth inhibition of breast cancer MCF-7 cells by ouabain, digoxin and proscillaridin. Biol Pharm Bull. 2006;29(7):1493–7. https://doi.org/10.1248/bpb.29.1493
30. Lopez-Lazaro M, Pastor N, Azrak SS, Ayuso MJ, Austin CA, Cortes F. Digitoxin inhibits the growth of cancer cell lines at concentrations commonly found in cardiac patients. J Nat Prod. 2005;68(11):1642–5. https://doi.org/10.1021/np050226l
31. Newman RA, Yang Р, Hittelman WN, Lu T, Ho DH, Ni D, et al. Oleandrin-mediated oxidative stress in human melanoma cells. J Exp Ther Oncol. 2006;5(3):167–81. PMID: 16528968
32. Masuda Y, Kawazoe N, Nakajo S, Yoshida T, Kuroiwa Y, Nakaya K. Bufalin induces apoptosis and influences the expression of apoptosis-related genes in human leukemia cells. Leuk Res. 1995;19(8):549–56. https://doi.org/10.1016/0145-2126(95)00031-i
33. Jing Y, Ohizumi H, Kawazoe N, Hashimoto S, Masuda Y, Nakajo S, et al. Selective inhibitory effect of bufalin on growth of human tumor cells in vitro: association with the induction of apoptosis in leukemia HL-60 cells. Jpn J Cancer Res. 1994;85(6):645–51. https://doi.org/10.1111/j.1349-7006.1994.tb02408.x
34. Kawazoe N, Watabe M, Masuda Y, Nakajo S, Nakaya K. Tiam1 is involved in the regulation of bufalin-induced apoptosis in human leukemia cells. Oncogene 1999;18(15):2413–21. https://doi.org/10.1038/sj.onc.1202555
35. Watabe M, Kawazoe N, Masuda Y, Nakajo S, Nakaya K. Bcl-2 protein inhibits bufalin-induced apoptosis through inhibition of mitogen-activated protein kinase activation in human leukemia U937 cells. Cancer Res. 1997;57(15):3097–100. PMID: 9242431
36. Kruglov DS, Koshkareva KE. Quantitative estimation of convallatoxin in plant raw material containing cardiosteroids by photometry. Sibirskij Medicinskij Vestnik. 2019;(4):34–7 (In Russ.). EDN: LHXXYU
37. Vlasenko LM. Determination of digitalis glycosides in cadaveric material by a photometric method based on the reaction of interaction with 2,2’,4,4’–tetranitrobiphenyl. Forensic Medical Examination. 1976;(4):23–7 (In Russ.).
38. Hassan MHA, Ismail MA, Moharram AM, Shoreit AAM. Phytochemical and antimicrobial of latex serum of Calotropis procera and its silver nanoparticles against some reference pathogenic strains. J Ecol Health Environ. 2017;5(3):65–75. https://doi.org/10.18576/jehe/050301
39. Galey FD, Holstege DM, Plumlee KH, Tor E, Johnson B, Anderson ML, et al. Diagnosis of oleander poisoning in livestock. J Vet Diagn Invest. 1996;8(3):358–64. https://doi.org/10.1177/104063879600800314
40. Hamada K, Iwamoto A, Miyazaki S, Yamanaka N, Guruge KS. Determination of bovine blood oleandrin by high-performance liquid chromatography and postcolumn derivatization. J Chromatogr Sci. 2002;40(9):515–8. https://doi.org/10.1093/chromsci/40.9.555
41. Praveen US, Gowtham MD, Yogaraje-Gowda CV, Nayak VG, Mohan BM. Detection of residues of cardenolides of Nerium oleander by high-performance thinlayer chromatography in autopsy samples. Int J Med Toxicol Forensic Med. 2012;2(4):135–42. https://doi.org/10.22037/ijmtfm.v2i4(Autumn).3758
42. Tymiak AA, Norman JA, Bolgar M, DiDonato GC, Lee H, Parker WL, et al. Physicochemical characterization of a ouabain isomer isolated from bovine hypothalamus. Proc Natl Acad Sci USA. 1993;90(17):8189–93. https://doi.org/10.1073/pnas.90.17.8189
43. Baecher S, Kroiss M, Fassnacht M, Vogeser M. No endogenous ouabain is detectable in human plasma by ultrasensitive UPLC-MS/MS. Clin Chim Acta. 2014;431:87–92. https://doi.org/10.1016/j.cca.2014.01.038
44. Bylda C, Thiele R, Kobold U, Volmer DA. Simultaneous quantification of digoxin, digitoxin, and their metabolites in serum using high performance liquid chromatography-tandem mass spectrometry. Drug Test Anal. 2015;7(10):937–46. https://doi.org/10.1002/dta.1781
45. Frommherz L, Köhler H, Brinkmann B, Lehr M, Beike J. LC-MS assay for quantitative determination of cardio glycoside in human blood samples. Int J Legal Med. 2008;122(2):109–14. https://doi.org/10.1007/s00414-007-0175-5
46. Gopal Ravi B, Grace Guardian ME, Dickman R, Wang ZQ. Profiling and structural analysis of cardenolides in two species of Digitalis using liquid chromatography coupled with high-resolution mass spectrometry. J Chromatogr A. 2020:1618:460903. https://doi.org/10.1016/j.chroma.2020.460903
47. Gosetti F, Nebbia C, Ceci L, Carelli G, Marengo E. UHPLC-MS/MS determination of oleandrin in blood and tissues of dairy cattle poisoned by oleander (Nerium oleander). Anal Methods. 2019;11:5562–7. https://doi.org/10.1039/C9AY01800J
48. Gozalpour E, Greupink R, Bilos A, Verweij V, van den Heuvel J, Masereeuw R, et al. Convallatoxin: A new P-glycoprotein substrate. Eur J Pharmacol. 2014;744:18–27. https://doi.org/10.1016/j.ejphar.2014.09.031
49. Gozalpour E, Greupink R, Wortelboer HM, Bilos A, Schreurs M, Russel FGM, Koenderink JB. Interaction of digitalis-like compounds with liver uptake transporters NTCP, OATP1B1, a nd O ATP1B3. Mol Pharm. 2014;11(6):1844–55. https://doi.org/10.1021/mp400699p
50. Grabowski T, Swierczewska A, Borucka B, Sawicka R, Sasinowska-Motyl M, Gumułka SW, et al. А rapid chromatographic/mass spectrometric method for digoxin quantification in human plasma. Pharm Chem J. 2009;43:710–5. https://doi.org/10.1007/s11094-010-0384-y
51. Guan F, Ishii A, Seno H, Watanabe-Suzuki K, Kumazawa T, Suzuki O. Identification and quantification of cardiac glycosides in blood and urine samples by HPLC/ MS/MS. Anal Chem. 1999;71(18):4034–43. https://doi.org/10.1021/ac990268c
52. Josephs RD, Daireaux A, Westwood S, Wielgosz RI. Simultaneous determination of various cardiac glycosides by liquid chromatography-hybrid mass spectrometry for the purity assessment of the therapeutic monitored drug digoxin. J Chromatogr A. 2010;1217(27):4535–43. https://doi.org/10.1016/j.chroma.2010.04.060
53. Kohls S, Scholz-Bottcher B, Rullkotter J, Teske J. Method validation of a survey of thevetia cardiac glycosides in serum samples. Forensic Sci Int. 2012;215(1–3):146–51. https://doi.org/10.1016/j.forsciint.2011.02.013
54. Liang X, Christensen JH, Nielsen JN. Enhancing the power of liquid chromatography — Mass spectrometry for chemical fingerprinting of phytotoxins in the environment. J Chromatogr A. 2021;1642:462027. https://doi.org/10.1016/j.chroma.2021.462027
55. Malysheva SV, Mulder PPJ, Masquelier J. Development and validation of a UHPLC-ESI-MS/MS method for quantification of oleandrin and other cardiac glycosides and evaluation of their levels in herbs and spices from the Belgian market. Toxins (Basel). 2020;12(4):243. https://doi.org/10.3390/toxins12040243
56. Mitamura K, Horikawa A, Yamane Y, Ikeda Y, Fujii Y, Shimada K. Determination of digoxin in human serum using stable isotope dilution liquid chromatography/ electrospray ionization-tandem mass spectrometry. Biol Pharm Bull. 2007;30(9):1653–6. https://doi.org/10.1248/bpb.30.1653
57. Rubini S, Rossi SS, Mestria S, Odoardi S, Chendi S, Poli A, et al. A probable fatal case of oleander (Nerium oleander) poisoning on a cattle farm: a new method of detection and quantification of the oleandrin toxin in rumen. Toxins (Basel). 2019;11(8):442. https://doi.org/10.3390/toxins11080442
58. Yadav PB, Lekhak UM, Ghane SG, Lekhak MM. Phytochemicals, antioxidants, estimation of cardiac glycoside (Scillaren A) and detection of major metabolites using LC-MS from Drimia species. S Afr J Bot. 2021;140:259–68. https://doi.org/10.1016/j.sajb.2020.05.002
59. Zhai JX, Yan H, Shen M, Shen BH, Liu W. Determination of oleandrin in blood and liver samples by LC-MS/ MS. Fa Yi Xue Za Zhi. 2018;34(6):585–9. https://doi.org/10.12116/j.issn.1004-5619.2018.06.002
60. Amitava D, Pradip D. Rapid detection of oleander poisoning using digoxin immunoassays comparison of five assays. Ther Drug Monit. 2004;26(6):658–63. https://doi.org/10.1097/00007691-200412000-00012
61. Solnica B. Comparison of serum digoxin concentration monitoring by fluorescence polarization immunoassay on the TDxFLx and dry chemistry enzyme immunoassay on the Vitros 950. Clin Chem Lab Med. 2004;42(8):958–64. https://doi.org/10.1515/CCLM.2004.156
62. Züst T, Petschenka G, Hastings AP, Agrawal AA. Toxicity of milkweed leaves and latex: chromatographic quantification versus biological activity of cardenolides in 16 Asclepias species. J Chem Ecol. 2019;45(1):50–60. https://doi.org/10.1007/s10886-018-1040-3
63. Dasgupta А, Bourgeois L. Convallatoxin, the active cardiac glycoside of lily of the valley, minimally affects the ADVIA Centaur digoxin assay. J Clin Lab Anal. 2018;32(8):e22583. https://doi.org/10.1002/jcla.22583
64. Pellati F, Bruni R, Bellardi MG, Bertaccini A, Benvenuti S. Optimization and validation of a high-performance liquid chromatography method for the analysis of cardiac glycosides in Digitalis lanata. J Chromatogr A. 2009;1216(15):3260–9. https://doi.org/10.1016/j.chroma.2009.02.042
65. Agrawal P, Akhade M, Laddha K, Narkhede S, Mirgal A, Salunke C. Quantification of convallatoxin in Antiaris toxicaria Leusch seeds by RP-HPLC. Anal Chem Lett. 2014;4(3):172–7. https://doi.org/10.1080/22297928.2014.925821
66. Agrawal AA, Ali А, Johnson MD, Hastings AP, Burge D, Weber MG. Toxicity of the spiny thick-foot Pachypodium. Am J Bot. 2018;105(4):677–86. https://doi.org/10.1002/ajb2.1057
67. Butt AN, Tennant BP, Gillingwater SD, Shepherd PS, Swaminathan R. Binding оf ouabain and human ouabainlike substance to different Na+, K+-ATPase isoforms. Hypertens Res. 2000;23 Suppl:S45–50. https://doi.org/10.1291/hypres.23.supplement_s45
68. Namera A, Yashiki M, Okada K, Iwasaki Y, Kojima T. Rapid quantitative analysis of oleandrin in human blood by high-performance liquid chromatography. Nihon Hoizaku Zasshi. 1997;51(4):315–8. PMID: 9366138
69. Desta B. HPLC analysis of digoxin and digitoxin: development of methods for dosage form assay and separation of potential impurities and metabolites. University of British Columbia; 1982. https://doi.org/10.14288/1.0095102
70. Pérez-Alonso N, Martín R, Capote A, Pérez A, Hernández-Díaz EK, Rojas L, et al. Efficient direct shoot organogenesis, genetic stability and secondary metabolite production of micropropagated Digitalis purpurea L. Ind Crops Prod. 2018;116:259–66. https://doi.org/10.1016/j.indcrop.2018.02.067
71. Hensel A, Kreis W. GLC-MS investigations on cardenolide genins. Pharm Acta Helv. 1997;72(4):243–6. https://doi.org/10.1016/S0031-6865(97)00020-4
72. Platonov VV, Volochaeva MV, Khadartsev AA, Melyakova DA, Sukhikh GT, Dunaeva IV. The chemical composition of ethanol extract of lily of the valley (Convallaria majalis L., Lily family). Journal of New Medical Technologies. 2019;(2):53–60 (In Russ.). https://doi.org/10.24411/1609-2163-2019-16356
73. Bykov EV, Vikhareva EV. Pharmacopoeial methods for the analysis of cardiac glycosides in plant raw materials and medicines (review). Problems of Biological, Medical and Pharmaceutical Chemistry. 2023;26(7):5–11 (In Russ.). https://doi.org/10.29296/25877313-2023-07-01
74. Orynbekova SO, Keleke AS, Sakipova ZB, Ibragimova LN, Sermukhamedova OV, Nurgozhin TS. Comparative evaluation of the identification methods of cardiac glycosides in herbal drugs. Vestnik KazNMU. 2019;(2):396–9 (In Russ.).
Supplementary files
![]() |
1. Table 2. Comparison of quality control methods for herbal drugs containing cardiac glycosides, with the corresponding test methods outlined in national and international pharmacopoeias | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(848KB)
|
Indexing metadata ▾ |
![]() |
2. Table 3. Comparison of quality parameters for herbal drugs and herbal medicinal products containing cardiac glycosides, with the corresponding testing methods outlined in national and international pharmacopoeias | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(870KB)
|
Indexing metadata ▾ |
Review
For citations:
Evdokimova O.V., Beketova A.V., Naumova O.A., Klinkova I.V., Shemeryankina T.B., Ladygina L.A., Bushchik K.S. Modern methods for identification and quantification of cardiac glycosides. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2023;13(4):567-577. (In Russ.) https://doi.org/10.30895/1991-2919-2023-13-4-567-577