Preview

Regulatory Research and Medicine Evaluation

Advanced search

Pyrrolizidine Alkaloids of Boraginaceae Family and Safety Assessment of Acute Toxicity

https://doi.org/10.30895/1991-2919-2025-15-6-701-711

Abstract

INTRODUCTION. Plants of Boraginaceae family (Pulmonaria mollis, Nonea rossica, Onosma simplicissima, and Cynoglossum officinale) are widespread over the Russian Federation and are promising sources of phytomedicines with important pharmacological properties, such as antimicrobial, antianaemic, anticoagulant etc. Currently, Boraginaceae are not classified as officinal plants, presumably due to pyrrolizidine alkaloids (PA) that can cause hepatotoxic effect.

AIM. This study aimed to assess safety using Boraginaceae plants based on acute toxicity and content of pyrrolizidine alkaloids.

MATERIALS AND METHODS. The research objects were dried herbs of Pulmonaria mollis, Nonea rossica, Onosma simplicissima, and Cynoglossum officinale, collected from flowering plants in Novosibirsk region over 2023–2024. The composition and amount of alkaloids in alcohol extracts were determined by high-performance liq­uid chromatography with diode array and mass-spectrometry detection with electrospray ionisation. Acute toxicity was tested in vivo in 102 mature male and female CD-1 mice weighing 24.0±2.0 g, aged 12 weeks, taken from Conventional Animal Vivarium of Scientific Center of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences. The animals received a single dose of dried study extracts diluted in distilled water at 5 g/kg.

RESULTS. The absence of PA in P. mollis herb was established, alongside with its trace amounts (0.01 μg/g) in P. mollis leaves. In other studied plant species, PA, such as enantiomers of intermedine, lycopsamine and their deriva­tives were found: O. simplicissima herb — 1.07±0.03 μg/g, N. rossica herb — 8.25±0.08 μg/g; in C. officinale herb — 676.3±7.4 μg/g. Assessed acute toxicity made it possible to classify dry extracts from P. mollis herbs and leaves, N. rossica herb and O. simplicissima herb as toxicity class 5, and C. officinale herb as toxicity class 4.

CONCLUSIONS. Study doses of extracts taken from herbs and leaves of P. mollis are non-toxic. For extracts from O. simplicissima and N. rossica herb, further research is relevant to determine toxicity in prolonged use. Extracts from C. officinale herb are toxic and cannot be used per os.

About the Authors

V. V. Velichko
Novosibirsk State Medical University
Russian Federation

Viktoriya V. Velichko, Cand. Sci. (Pharm.), Associate Professor

52 Krasny Ave., Novosibirsk 630091



D. N. Olennikov
Institute of General and Experimental Biology
Russian Federation

Daniil N. Olennikov, Dr. Sci. (Pharm.), Professor

6 Sakhyanova St., Ulan-Ude 670047



E. D. Oleshko
Novosibirsk State Medical University
Russian Federation

Egor D. Oleshko

52 Krasny Ave., Novosibirsk 630091



K. I. Yershov
Novosibirsk State Medical University; Research Institute of Clinical and Experimental Lymphology — Branch of Institute of Cytology and Genetics
Russian Federation

Konstantin I. Ershov, Cand. Sci. (Biol.), Associate Professor

52 Krasny Ave., Novosibirsk 630091

6 Arbuzov St., Novosibirsk 630117



D. S. Kruglov
Novosibirsk State Medical University
Russian Federation

Dmitriy S. Kruglov, Cand. Sci. (Tech.), Associate Professor

52 Krasny Ave., Novosibirsk 630091



K. A. Koshlich
Novosibirsk State Medical University
Russian Federation

Ksenia A. Koshlich, Cand. Sci. (Med.)

52 Krasny Ave., Novosibirsk 630091



References

1. Tamakhina AYa. Micromorphological features of the leaf epidermis and secondary metabolites of a promising medicinal plant hound’s-tongue (Cynoglossum officinale L.) flora of Kabardino-Balkarian. Proceedings of Gorsky State Agrarian University. 2023;60(2):118–28 (In Russ.). EDN: NLKUMW

2. Dresler S, Szymczak G, Wójcik M. Comparison of some secondary metabolite content in the seventeen species of the Boraginaceae family. Pharm Biol. 2017;55(1):691–5. https://doi.org/10.1080/13880209.2016.1265986

3. Chrzanowska E, Denisow B, Ekiert H, Pietrzyk Ł. Metabolites obtained from Boraginaceae plants as potential cosmetic ingredients — A review. Molecules. 2024;29(21):5088. https://doi.org/10.3390/molecules29215088

4. Yan Y, Wei X, Qiu B, et al. Exploring pharmaphylogeny from multiple perspectives: A case study on Lithospermeae. Sci Rep. 2023;13(1):7636. https://doi.org/10.1038/s41598-02334830-4

5. Kararenk AC, Sönmez HR, Asgarli T, et al. Comprehensive analysis of elemental and metabolite composition in Boraginaceae species from Türkiye. Chem Biodivers. 2025;22(5):e202402331. https://doi.org/10.1002/cbdv.202402331

6. Velichko VV, Kruglov DS, Turyshev AYu, Belonogova VD. Estimation of Pulmonaria mollis and P. obscura (Boraginaceae) raw material stocks. Rastitelnye Resursy. 2025;61(3):52–9 (In Russ.).

7. Chacón J, Luebert F, Hilger HH, et al. The borage family (Boraginaceae s.str.): a revised infrafamilial classification based on new phylogenetic evidence, with emphasis on the placement of some enigmatic genera. Taxon. 2016;65(3):523–46. https://doi.org/10.12705/653.6

8. Vasile M-A, Böhnert T, Jeiter J, et al. An updated phylogeny of Boraginales based on the Angiosperms353 probe set: a roadmap for understanding morphological evolution. Ann Bot. 2025;136(1):77–97. https://doi.org/10.1093/aob/mcaf061

9. Grünwald J, Jänicke Ch. Grüne Apotheke: Das moderne Standardwerk zur Pflanzenheilkunde. Berlin: Gräfe und unzer Verlag GmbH; 2015.

10. Nikolaev NA, Livazan MA, Skirdenko YuP, Martynov AI. Biologically active plants and fungi of Siberia in clinical medicine. M.: Academy of Natural Sciences; 2019 (In Russ.). EDN: PCKISJ

11. Mohammed HH, Abdullah FO. Microwave-assisted extraction and phytochemical profile of Nonea pulmonarioides and its antifungal, antibacterial, and antioxidant activities. J Food Qual. 2022;2022(1):1–12. https://doi.org/10.1155/2022/5135880

12. Jabbar АА, Abdullah FО, Hassan AO, et al. Ethnobotanical, phytochemistry, and pharmacological activity of Onosma (Boraginaceae) an updated review. Molecules. 2022;27(24):8687. https://doi.org/10.3390/molecules27248687

13. Baragunova MA. Development and justification of liquid extract of medicinal comfrey for using gastric ulcer and duodenal ulcer. Scientific Leader. 2022;(7):85–91 (In Russ.). EDN: UGTPCT

14. These A, Bodi D, Ronczka S, et al. Structural screening by multiple reaction monitoring as a new approach for tandem mass spectrometry: presented for the determination of pyrrolizidine alkaloids in plants. Anal Bioanal Chem. 2013;405(29): 9375–83. https://doi.org/10.1007/s00216-013-7365-4

15. Yakovleva EG. Diagnostics, treatment and prevention of animal poisoning by plants containing pyrrolizidine alkaloids. Bulletin of the Kursk State Agricultural Academy. 2008:(4):30–3 (In Russ.). EDN: KZVGFR

16. Van Dam Nicole M, Witte L, Theuring C, et al. Distribution, biosynthesis and turnover of pyrrolizidine alkaloids in Cynoglossum officinale. Phytochemistry. 1995;39(2):287–92. https://doi.org/10.1016/0031-9422(94)00944-O

17. Pfister JA, Molyneux RJ, Baker DC. Pyrrolizidine alkaloid content of houndstongue (Cynoglossum officinale L). J Range Manag. 1992:45(3):254–6. https://doi.org/10.2307/4002973

18. El-Shazly A, Sarg T, Ateya A, et al. Pyrrolizidine alkaloids of Cynoglossum officinale and Cynoglossum amabile (family Boraginaceae). Biochem Syst Ecol. 1996:24(5):415–21. https://doi.org/10.1016/0305-1978(96)00035-X

19. Montaner C, Zufiaurre R, Movila M, Mallor C. Evaluation of borage (Borago officinalis L.) genotypes for nutraceutical value based on leaves fatty acids composition. Foods. 2021;11(1):16. https://doi.org/10.3390/foods11010016

20. Velichko VV, Lastovka AV, Kartashova ME, et al. Development and validation of an analytical procedure for the determination of caffeic acid in Nonea rossica herb by HPLC. Regulatory Research and Medicine Evaluation. 2025;15(2):222–8 (In Russ.). https://doi.org/10.30895/1991-2919-2025-680

21. Velichko VV. Pharmacognostic study of widespread Boragineae tribe plants. In: Collection of materials of the International Conference «Achievements and prospects of creating new herbal medicines». Moscow; 2024. Р. 106–10 (In Russ.). EDN: OLWRSN

22. Jayawickreme K, Świstak D, Ozimek E, et al. Pyrrolizidine alkaloids-pros and cons for pharmaceutical and medical applications. Int J Mol Sci. 2023;24(23):16972. https://doi.org/10.3390/ijms242316972

23. Kartashova ME, Velichko VV, Kruglov DS. Commodity science indicators of medicinal plant raw materials Nonea herb. In: All-Russian Scientific and Practical Conference with international participation «Kromer Readings 2024». Perm; 2024 (In Russ.). EDN: NILHDN

24. Oleshko ED, Kruglov DS. Optimal conditions for phenolic compounds extraction from Onosma simplicissima herb. In: Collection of materials of the International Scientific and Practical Conference «Achievements and prospects of creating new herbal medicines». Moscow; 2025. P. 444–7 (In Russ.). EDN: MRKHMR

25. Kashchenko NI, Olennikov DN, Chirikova NK. Phenolic compounds and pyrrolizidine alkaloids of two north bluebells: Mertensia stylosa and Mertensia serrulate. Appl Sci. 2023;13(5):3266. https://doi.org/10.3390/app13053266

26. Prozorovsky VB. Determining average effective measures of impact on biological objects by tabular express method. Toxicological Review. 1998;(1):28–32 (In Russ.).

27. Wei X, Ruan W, Vrieling K. Current knowledge and perspectives of pyrrolizidine alkaloids in pharmacological applications: A mini-review. Molecules. 2021;26(7):1970. https://doi.org/10.3390/molecules26071970

28. Lu Y-S, Qiu J, Mu X-Y, Qian Y-Z, Chen L. Levels, toxic effects, and risk assessment of pyrrolizidine alkaloids in foods: a review. Foods. 2024;13(4):536. https://doi.org/10.3390/foods13040536

29. Fu PP, Xia Q, Lin G, Chou MW. Pyrrolizidine alkaloids — genotoxicity, metabolism, enzymes, metabolic activation, and mechanisms. Drug Metab Rev. 2004;36(1):1–55. https://doi.org/10.1081/dmr-120028426

30. El-Shazly A, Wink M. Diversity of pyrrolizidine alkaloids in the Boraginaceae structures, distribution, and biological properties. Diversity. 2014;6(2):188–282. https://doi.org/10.3390/d6020188

31. Cooper RA, Huxtable RJ. The relationship between reactivity of metabolites of pyrrolizidine alkaloids and extrahepatic toxicity. Proc West Pharmacol Soc. 1999; 42:13–6.

32. Wang Z, Han H, Wang C, et al. Hepatotoxicity of pyrrolizidine alkaloid compound intermedine: comparison with other pyrrolizidine alkaloids and its toxicological mechanism. Toxins. 2021;13(12):849. https://doi.org/10.3390/toxins13120849

33. Wang Z, Qiao L, Zheng Q, et al. Combined hepatotoxicity and toxicity mechanism of intermedine and lycopsamine. Toxins. 2022;14(9):633. https://doi.org/10.3390/toxins14090633

34. Casado N, Morante-Zarcero S, Sierra I. The concerning food safety issue of pyrrolizidine alkaloids. An overview. Trends Food Sci Technol. 2022;120:123–39.


Supplementary files

1. Tables 3, 4
Subject
Type Исследовательские инструменты
Download (877KB)    
Indexing metadata ▾

Review

For citations:


Velichko V.V., Olennikov D.N., Oleshko E.D., Yershov K.I., Kruglov D.S., Koshlich K.A. Pyrrolizidine Alkaloids of Boraginaceae Family and Safety Assessment of Acute Toxicity. Regulatory Research and Medicine Evaluation. 2025;15(6):701-711. (In Russ.) https://doi.org/10.30895/1991-2919-2025-15-6-701-711

Views: 234

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-3062 (Print)
ISSN 3034-3453 (Online)