Aetiopathogenetic Architecture for Pharmaceutical Development (Using Gout as a Case Study)
https://doi.org/10.30895/1991-2919-2025-724
Abstract
INTRODUCTION. A holistic understanding of the physiological and biochemical pathways involved in pathogenesis is needed both for doctors diagnosing and treating patients and for drug developers. The accumulated knowledge in medicine and related fields, combined with the rapid development of digital tools, enables simulating the response systems of the body under normal and pathological conditions at a qualitatively new level. Being able to perform such simulations will lead to creating a digital architecture of body conditions, with interconnected links in the chain of pathogenesis being the focal points for researchers advancing medicines from early development to clinical trials.
AIM. This study aimed to review existing approaches that could form a foundation for constructing an aetiopathogenetic architecture of pathological conditions and diseases that would serve as a framework for targeted drug development.
DISCUSSION. Using gout as a case study, the authors demonstrated the necessity and possibility of developing a three-dimensional aetiopathogenetic architecture of pathological conditions and diseases that would be based on the hierarchical relationships of pathological processes at different biological organisation levels. The study identified key applications for the aetiopathogenetic architecture. In medicine, the aetiopathogenetic architecture could be used in data-driven individual diagnostics and personalised pharmacotherapy. In pharmaceutics, the aetiopathogenetic architecture could provide a platform for investigating pharmacodynamics, from screening candidate compounds to applying targeted and multitargeted approaches in pharmaceutical development. The authors used the aetiopathogenetic architecture of gout as a case study to discuss the logic behind designing studies of medicines.
CONCLUSIONS. The article proposes a methodology for constructing an aetiopathogenetic architecture reflecting cause-and-effect relationships of different significance to the development of pathological conditions and diseases. The aetiopathogenetic approach should become an integrative framework for all stages of the development and use of novel medicines, as well as a basis for expanding the indications for existing medicines. New opportunities are arising for the development of aetiopathogenetic models of varying complexity that can be used in projects ranging from drug design at the molecular level to pathophysiological modelling at the organismal level.
Keywords
About the Authors
E. V. AvdeevaRussian Federation
Elena V. Avdeeva, Dr. Sci. (Pharm.), Professor
89 Chapaevskaya St., Samara 443079
N. R. Varina
Russian Federation
Natalia R. Varina, Cand. Sci. (Pharm.)
89 Chapaevskaya St., Samara 443079
T. K. Ryazanova
Russian Federation
Tatyana K. Ryazanova, Dr. Sci. (Pharm.)
89 Chapaevskaya St., Samara 443079
V. A. Kurkin
Russian Federation
Vladimir A. Kurkin, Dr. Sci. (Pharm.), Professor
89 Chapaevskaya St., Samara 443079
N. V. Isakova
Russian Federation
Natalia V. Isakova, Cand. Sci. (Med.)
89 Chapaevskaya St., Samara 443079
L. T. Volova
Russian Federation
Larissa T. Volova, Dr. Sci. (Med.), Professor
89 Chapaevskaya St., Samara 443079
D. A. Poltoretskii
Russian Federation
Denis A. Poltoretskii
89 Chapaevskaya St., Samara 443079
References
1. Dedov II. Personalized medicine. Annals of the Russian Academy of Medical Sciences. 2019;74(1):61–70 (In Russ.). https://doi.org/10.15690/vramn1108
2. Dolgopolov IS, Rykov MYu. The evolution of personalized medicine: Literature review. Research and Practical Medicine Journal. 2022;9(3):117–28 (In Russ.). https://doi.org/10.17709/2410-1893-2022-9-3-9
3. Khokhlov AL, Sychev DA. The concept of patient-oriented medicine and pharmacy. Patient-Oriented Medicine and Pharmacy. 2023; 1(1):1–4 (In Russ.). https://doi.org/10.37489/2949-1924-0001
4. Shcherbo SN, Shcherbo DS. Laboratory diagnostics as the basis of medicine of 5P. Bulletin of RSMU. 2019;(1):5–14 (In Russ.). https://doi.org/10.24075/brsmu.2018.095
5. Trocin C, Mikalef P, Papamitsiou Z, Conboy K. Responsible AI for digital health: A synthesis and a research agenda. Inf Syst Front. 2023;25:2139–57. https://doi.org/10.1007/s10796-021-10146-4
6. Germanov NS. The concept of responsible artificial intelligence as the future of artificial intelligence in medicine. Digital Diagnostics. 2023;4(1S):27–9 (In Russ.). https://doi.org/10.17816/DD430334
7. Kolsanov AV, Sedashkina OA, Poretskova GYu, Plakhotnikova SP, Postnikov MA, Beschastnaya EO. Clinical, paraclinical and molecular genetic indicators of children with chronic kidney disease, which should be subject to dispensary observation in the Samara region. Certificate of registration of the database of the Russian Federation No. 2024622010; 2024 (In Russ.). EDN: QTUISW
8. Avdeeva EV, Voronin AS, Erkhov VYu. A program for the study of medical disciplines based on the principle of a multidisciplinary nosological approach “3D structure of knowledge”. Certificate of registration of the computer program of the Russian Federation No. 2021619194; 2021 (In Russ.). EDN: PQKMJX
9. Pakhomov VA, Sobolevskaya PA, Kuznetsov AV, Churilov LP, Normatov MG. A program for analyzing proteins for the content of overlapping amino acid sequences with human allergen proteins (Allergentaj). Certificate of registration of the computer program of the Russian Federation No. 2023685928; 2023 (In Russ.).
10. Malyshev IY, Pihlak AE, Budanova OP. Molecular and cellular mechanisms of inflammation in gout. Pathogenesis. 2019;17(4):4–13 (In Russ.). https://doi.org/10.25557/2310-0435.2019.04.4-13
11. Gavrilova NYu, Beregovskaya AV, Suprun LA, Lukashenko MV, Churilov LP, Fedotkina TV, Pchelin IYu. A method for diagnosing early neurological disorders in patients with type 1 diabetes mellitus. Patent of the Russian Federation No. 2808480; 2023 (In Russ.). EDN: GEOKMI
12. Pavlova VYu, Denisenko VE, Chesnokova LD, Aneshina II. Diagnostic possibilities of urinalysis. Fundamental and Clinical Medicine. 2022;7(4):122–35 (In Russ.). https://doi.org/10.23946/2500-0764-2022-7-4-122-135
13. Kang HS, Lee N-E, Yoo DM, Han KM, Hong JY, Choi HG, et al. An elevated likelihood of stroke, ischemic heart disease, or heart failure in individuals with gout: A longitudinal follow-up study utilizing the National Health Information data-base in Korea. Front Endocrinol (Lausanne). 2023;14:1195888. https://doi.org/10.3389/fendo.2023.1195888
14. Kachkovsky MA, Fedorina TA, Ragozina EYu, Chekuldaeva LI, Glubokov DK, Suvorov AE. Assessment of the intensity of the systemic inflammatory response to the size of myocardial necrosis according to morphometric research. Morphological Newsletter. 2013;(3):53–6 (In Russ.). EDN: SDFRPV
15. Yashin SS, Kireeva AO, Sukhachev PA. Stress-induced cardiomyopathy (Takotsubo syndrome). Innovative medicine of Kuban. 2023;8(1):111–5 (In Russ.). https://doi.org/10.35401/2541-9897-2023-26-1-111-115
16. Dadali VA. The role of cobalt, copper, molybdenum, selenium, zinc, and manganese in providing homeostatic regulation responses. Therapist. 2022;(11):36–9 (In Russ.). https://doi.org/10.33920/MED-12-2211-04
17. Gonçalves C, Macedo H, Fernandes L, Churilov L, de Carvalho J. Probiotics in rheumatic diseases: A systematic review. Russ Biomed Res. 2023;8(2):92–111. https://doi.org/10.56871/RBR.2023.39.42.011
18. Eliseev MS. Classification criteria for gout (ACR/EULAR recommendations). Scientific and Practical Rheumatology. 2015;53(6):581–5 (In Russ.). https://doi.org/10.14412/1995-4484-2015-581-585
19. Libov IA, Moiseeva YuN, Komarova AG. Hyperuricemia as a risk factor for cardiovascular events in hypertensive patients. Russian Journal of Cardiology. 2022;27(9):5194 (In Russ.). https://doi.org/10.15829/1560-4071-2022-5194
20. Ivanov MF, Balmasova IP, Zhestkov AV, Rogozina LA. The role of innate and adaptive immune response lymphocytes in pathogenesis of hemorrhagic fever with renal syndrome. ACTA Sci Med Sci. 2019;3(8):120. https://doi.org/10.31080/asms.2019.03.0357
21. Kovač Z. Pathophysiological body reactivity and interactions in comorbidities. Synergism versus antagonism of disease pathways and etiopathogenetic clusters in comorbidity conditions. Psychiatr Danub. 2021;33(4):414–26. PMID: 30946713
22. Pascart T, Latourte A, Flipo RM, Chales G, Coblentz-Baumann L, Cohen-Solal A, et al. 2020 recommendations from the French Society of Rheumatology for the management of gout: Urate-lowering therapy. Joint Bone Spine. 2020:87(5):395–404. https://doi.org/10.1016/j.jbspin.2020.05.002
23. Fitzgerald JD, Dalbeth N, Mikuls T, Brignardello-Petersen R, Guyatt G, Abeles AM, et al. 2020 American College of Rheumatology guideline for the management of gout. Arthritis Care Res (Hoboken). 2020;72(6):744–60. https://doi.org/10.1002/acr.24180
24. Gromova MA, Tsurko VV. New recommendations of the American College of Rheumatology for the patient management with gout (2020). Review on some points. RMJ. Medical Review. 2021;5(2):89–95 (In Russ.). https://doi.org/10.32364/2587-6821-2021-5-2-89-95
25. Drapkina OM, Mazurov VI, Martynov AI, Gaidukova IZ, Duplyakov DV, Nevzorova VA, et al. “Focus on hyperuricemia”. The resolution of the Expert Council. Cardiovascular Therapy and Prevention. 2023;22(4):3564 (In Russ.). https://doi.org/10.15829/1728-8800-2023-3564
26. Yanai H, Adachi H, Hakoshima M, Katsuyama H. Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease. Int J Mol Sci. 2021;22(17):9221. https://doi.org/10.3390/ijms22179221
27. Kobalava ZhD, Troitskaya EA. Asymptomatic hyperuricemia: Treatment approaches according to the risk of cardiovascular and renal events. Kardiologiia. 2020;60(12):104–9 (In Russ.). https://doi.org/10.18087/cardio.2020.12.n1158
28. Richette P, Clerson P, Perissin L, Flipo R-M, Bardin T. Revisiting comorbidities in gout: A cluster analysis. Ann Rheum Dis. 2015;74(1):142–7. https://doi.org/10.1136/annrheumdis-2013-203779
29. Lee JK, Kim JW, Kim YS, Koo BS. A case of severe gouty tophi-induced carpal tunnel syndrome: Operative finding and its outcome. Handchir Mikrochir Plast Chir. 2018;50(1):19–21. https://doi.org/10.1055/a-0576-7299
30. Lin GL, Lin HC, Lin HL, Keller J, Wang L-H, et al. Association between statin use and the risk of gout in patients with hyperlipidemia: A population-based cohort study. Front Pharmacol. 2023;14:1096999. https://doi.org/10.3389/fphar.2023.1096999
31. Akbari A, Razmi M, Rafiee M, Watts GF, Sahebkar A. The effect of statin therapy on serum uric acid levels: A systematic review and meta-analysis. Curr Med Chem. 2023;31(13):1726–39. https://doi.org/10.2174/0929867330666230207124516
32. Yip ASY, Leong S, Teo YH, Teo YN, Syn NLX, See RM, et al. Effect of sodium-glucose cotransporter-2 (SGLT2) inhibitors on serum urate levels in patients with and without diabetes: A systematic review and meta-regression of 43 randomized controlled trials. Ther Adv Chronic Dis. 2022;13:20406223221083509. https://doi.org/10.1177/20406223221083509
33. Stamp LK, Chapman PT, Barclay ML, Horne A, Frampton C, Tan P, et al. A randomised controlled trial of the efficacy and safety of allopurinol dose escalation to achieve target serum urate in people with gout. Ann Rheum Dis. 2017;76(9):1522–8. https://doi.org/10.1136/annrheumdis-2016-210872
34. Panevin TS, Eliseev MS, Nasonov EL. Urate-lowering drugs in the treatment of gout: The unknown about the known. Rheumatology Science and Practice. 2021;59(6):727–37 (In Russ.). https://doi.org/10.47360/1995-4484-2021-727-737
35. Garanin AA, Novichkova NL, Lebedev PA. Prospects of anti-inflammatory and urate-lowering therapy of gout: A vector from the past to the future. Rheumatology Science and Practice. 2022;60(2):205–13 (In Russ.). https://doi.org/10.47360/1995-4484-2022-205-213
36. Kell DB, Goodacre R. Metabolomics and systems pharmacology: Why and how to model the human metabolic network for drug discovery. Drug Discovery Today. 2014;19(2):171–82. https://doi.org/10.1016/j.drudis.2013.07.014
37. Ha J, Park H, Park J, Park SB. Recent advances in identifying protein targets in drug discovery. Cell Chemical Biology. 2021;28(3):394–423. https://doi.org/10.1016/j.chembiol.2020.12.001
38. Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discovery. 2016;15(7):473–84. https://doi.org/10.1038/nrd.2016.32
39. Kankanige D, Liyanage L, O’Connor MD. Application of transcriptomics for predicting protein interaction networks, drug targets and drug candidates. Front Med Technol. 2022;4:693148. https://doi.org/10.3389/fmedt.2022.693148
40. Pabon NA, Xia Y, Estabrooks SK, Ye Z, Herbrand AK, Süß E, et al. Predicting protein targets for drug-like compounds using transcriptomics. PLoS Comput Biol. 2018;14(12):e1006651. https://doi.org/10.1371/journal.pcbi.1006651
41. Taipov MA, Nikiforova ZN, Shevchenko VE. Proteomic studies searching for breast cancer markers: А review of literature. Tumors of Female Reproductive System. 2015;11(2):8–18 (In Russ.). EDN: TZZYKB
42. Manes NP, Nita-Lazar A. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. J Proteomics. 2018;189:75–90. https://doi.org/10.1016/j.jprot.2018.02.008
43. Kopec KK, Bozyczko-Coyne D, Williams M. Target identification and validation in drug discovery: the role of proteomics. Biochem Pharmacol. 2005;69(8):1133–9. https://doi.org/10.1016/j.bcp.2005.01.004
44. Moellering RE, Cravatt BF. How chemoproteomics can enable drug discovery and development. Chem Biol. 2012;19(1):11–22. https://doi.org/10.1016/j.chembiol.2012.01.001
45. Villanueva MT. Proteomics reveals small molecules’ secrets. Nat Rev Drug Discovery. 2023;22(3):181. https://doi.org/10.1038/d41573-023-00019-7
46. Wishart DS. Applications of metabolomics in drug discovery and development. Drugs R D. 2008;9(5):307–22. https://doi.org/10.2165/00126839-200809050-00002
47. Mastrangelo A, Armitage EG, García A, Barbas C. Metabolomics as a tool for drug discovery and personalised medicine. A review. Curr Top Med Chem. 2014;14(23):2627–36. https://doi.org/10.2174/1568026614666141215124956
48. Pun FW, Ozerov IV, Zhavoronkov A. AI-powered therapeutic target discovery. Trends Pharmacol Sci. 2023;44(9):561–72. https://doi.org/10.1016/j.tips.2023.06.010
49. Bai F, Li S, Li H. AI enhances drug discovery and development. Natl Sci Rev. 2023;11(3):nwad303. https://doi.org/10.1093/nsr/nwad303
50. Lv Q, Zhou F, Liu X, Zhi L. Artificial intelligence in small molecule drug discovery from 2018 to 2023: Does it really work? Bioorg Chem. 2023;141:106894. https://doi.org/10.1016/j.bioorg.2023.106894
51. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, et al. PID: the Pathway Interaction Database. Nucleic Acids Research. 2009;37(1):674–9. https://doi.org/10.1093/nar/gkn653
52. Sadri A. Is target-based drug discovery efficient? Discovery and “off-target” mechanisms of all drugs. J Med Chem. 2023;66(18):12651–77. https://doi.org/10.1021/acs.jmedchem.2c01737
53. Tun K, Menghini M, D’Andrea L, Dhar P, Tanaka H, Giuliani A. Why so few drug targets: A mathematical explanation? Bentham Science. 2011;7(3):206–13. https://doi.org/10.2174/157340911796504297
54. Vincent F, Nueda A, Lee J, Schenone M, Prunotto M, Mercola M. Phenotypic drug discovery: Recent successes, lessons learned and new directions. Nat Rev Drug Discovery. 2022;21(12):899–914. https://doi.org/10.1038/s41573-022-00472-w
55. Balakin KV. Analysis of the structural transformations underlying the design of innovative next-in-class drugs. Russ J Gen Chem. 2023;93(Suppl 2):401–25. https://doi.org/10.1134/s107036322315001x
56. Britanova OV, Lupyr KR, Staroverov DB. Shagina IA, Aleksandrov AA, Ustyugov YY. Targeted depletion of TRBV9+ T cells as immunotherapy in a patient with ankylosing spondylitis. Nat Med. 2023;29(11):2731–6. https://doi.org/10.1038/s41591-023-02613-z
57. Makhoba XH, Viegas Jr C, Mosa RA, Viegas FPD, Pooe OJ. Potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Des Devel Ther. 2020;14:3235–49. https://doi.org/10.2147/DDDT.S257494
58. Ramsay RR, Popovic-Nikolic MR, Nikolic K, Uliassi E, Bolognesi ML. A perspective on multi-target drug discovery and design for complex diseases. Clin Transl Med. 2018;7(1):3. https://doi.org/10.1186/s40169-017-0181-2
59. Löscher W. Single-target versus multi-target drugs versus combinations of drugs with multiple targets: Preclinical and clinical evidence for the treatment or prevention of epilepsy. Front Pharmacol. 2021;12:730257. https://doi.org/10.3389/fphar.2021.730257
60. Sánchez-Tejeda JF, Sánchez-Ruiz JF, Salazar JR, Loza-Mejía MA. A definition of “multitargeticity”: Identifying potential multitarget and selective ligands through a vector analysis. Front Chem. 2020;8:176. https://doi.org/10.3389/fchem.2020.00176
61. Talevi A. Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front Pharmacol. 2015;6:205. https://doi.org/10.3389/fphar.2015.00205
62. Bizzarri M, ed. Approaching complex diseases. Human perspectives in health sciences and technology. Springer; 2020. https://doi.org/10.1007/978-3-030-32857-3
63. Lin HH, Zhang LL, Yan R, Lu JJ, Hu Y. Network analysis of drug–target interactions: A study on FDA-approved new molecular entities between 2000 to 2015. Sci Rep. 2017;7(1):12230. https://doi.org/10.1038/s41598-017-12061-8
64. Meerson A, Khatib S, Mahajna J. Natural products targeting cancer stem cells for augmenting cancer therapeutics. Int J Mol Sci. 2021 Dec 2;22(23):13044. https://doi.org/10.3390/ijms222313044
65. Lagunin A, Filimonov D, Poroikov V. Multi-targeted natural products evaluation based on biological activity prediction with PASS. Curr Pharm Des. 2010;16(15):1703–17. https://doi.org/10.2174/138161210791164063
66. Zheng C, Wang J, Liu J. Pei M, Huang C, Wang Y. System-level multi-target drug discovery from natural products with applications to cardiovascular diseases. Mol Divers. 2014;18(3):621–35. https://doi.org/10.1007/s11030-014-9521-y
67. Kurkin VA. Phenуlpropanoids from medicinal plants: Distribution, classification, structural analysis, and biological activity. Chemistry of Natural Compounds. 2003;39(2):123–53. https://doi.org/10.1023/A:1024876810579
68. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021;26(1):80–93. https://doi.org/10.1016/j.drudis.2020.10.010
69. Persidis A. The benefits of drug repositioning. Drug Discov World. 2011;12(2):9–12.
70. Lebedev PA, Volova LT, Osina NK, Paranina EV. NLRP3 inflammasomes are a new universal target of therapeutic effect in patients with asymptomatic hyperuricemia and gout. Rational Pharmacotherapy in Cardiology. 2024;20(3):331–9 (In Russ.). https://doi.org/10.20996/1819-6446-2024-3018
71. Tong Y, Wang Z, Cai L, Lin L, Liu J, Cheng J. NLRP3 inflammasome and its central role in the cardiovascular diseases. Oxid Med Cell Longev. 2020;2020:4293206. https://doi.org/10.1155/2020/4293206
72. Strandberg TE, Kovanen PT. Coronary artery disease: ‘gout’ in the artery? Eur Heart J. 2021;42(28):2761–4. https://doi.org/10.1093/eurheartj/ehab276
73. Peng TC, Wang CC, Kao TW, et al. Relationship between hyperuricemia and lipid profiles in US adults. Biomed Res Int. 2015;2015:127596. https://doi.org/10.1155/2015/127596
74. Volova LT, Pugachev EI, Starikova TV, Lebedev PA, Shafieva IA, Kuznetsov SI, et al. In vitro cell-based hyperuricemia–hemotest bioassay for cytokine status evaluation in patients with gouty arthritis. Science and Innovation in Medicine. 2024;9(1):14–21 (In Russ.). https://doi.org/10.35693/SIM546016
75. Horvath P, Aulner N, Bickle M, Davies AM, Del Nery E, Ebner D, et al. Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov. 2016;15(11):751–69. https://doi.org/10.1038/nrd.2016.175
Supplementary files
![]() |
1. Fig. 2. Aetiopathogenetic architecture of gout (fragment) | |
Subject | ||
Type | Other | |
Download
(104KB)
|
Indexing metadata ▾ |
Review
For citations:
Avdeeva E.V., Varina N.R., Ryazanova T.K., Kurkin V.A., Isakova N.V., Volova L.T., Poltoretskii D.A. Aetiopathogenetic Architecture for Pharmaceutical Development (Using Gout as a Case Study). Regulatory Research and Medicine Evaluation. (In Russ.) https://doi.org/10.30895/1991-2919-2025-724