Methods for Preclinical Assessment of the Efficacy of Anticancer Medicines in vivo (Review)
https://doi.org/10.30895/1991-2919-2025-655
Abstract
INTRODUCTION. The main risk to the clinical translatability of preclinical results for anticancer medicinal products is posed by the difficulty of simulating clinical conditions in an experimental model. With only 5% of product candidates proving clinically effective, the search for new approaches to the preclinical development of anticancer medicinal products is currently an active area of research in medicine.
AIM. This study aimed to provide methodological support for planning experiments with modelling of neoplastic processes through analysis and classification of the methods used in preclinical studies of the efficacy of anticancer medicinal products in vivo.
DISCUSSION. This article reviews the development of animal tumour models and the selection of cell lines and their testing for tumourigenicity and viability on a step-by-step basis. According to the study results, imaging systems, vital staining, and fluorescence- and luminescence-based methods can be used to assess the efficacy of anticancer medicinal products in both solid tumour models and haematological malignancy models. The article presents a schematic representation of the main types of mouse cancer models. However, no single animal species is universally suitable for in vivo cancer modelling. Researchers selecting models and considering their advantages and disadvantages should pay special attention to the similarity of disease mechanisms in animal models and humans at the tissue and molecular level, keeping in mind the aims of their research.
CONCLUSIONS. The results of this comparative analysis of methods for preclinical efficacy evaluation of anticancer medicinal products are essential for designing experimental studies and ensuring the reliability of the results obtained. Choosing the correct research method will increase the chances of obtaining experimental data that can be successfully translated into clinical practice.
Keywords
About the Authors
M. L. VasyutinaRussian Federation
Marina L. Vasyutina
2 Akkuratov St., St Petersburg 197341
K. V. Lepik
Russian Federation
Kirill V. Lepik, Cand. Sci. (Med.)
12 Roentgen St., St Petersburg 197022
M. S. Istomina
Russian Federation
Maria S. Istomina
2 Akkuratov St., St Petersburg 197341
K. A. Levchuk
Russian Federation
Ksenia A. Levchuk
2 Akkuratov St., St Petersburg 197341
A. V. Petukhov
Russian Federation
Alexey V. Petukhov
2 Akkuratov St., St Petersburg 197341
E. V. Shchelina
Russian Federation
Ekaterina V. Shchelina
2 Akkuratov St., St Petersburg 197341
A. E. Ershova
Russian Federation
Alina E. Ershova
2 Akkuratov St., St Petersburg 197341
1 Olympic Ave, Sirius Federal Territory, Krasnodar Region 354340
O. N. Demidov
Russian Federation
Oleg N. Demidov, Dr. Sci. (Med.)
4 Tikhoretsky Ave, St Petersburg 194064
1 Olympic Ave, Sirius Federal Territory, Krasnodar Region 354340
Ya. G. Toropova
Russian Federation
Yana G. Toropova, Dr. Sci. (Biol.)
2 Akkuratov St., St Petersburg 197341
31–33 Ivan Chernykh St., St Petersburg 198095
References
1. Day CP, Merlino G, Van Dyke T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell. 2015;163(1):39–53. https://doi.org/10.1016/j.cell.2015.08.068
2. Sajjad H, Imtiaz S, Noor T, Siddiqui YH, Sajjad A, Zia M. Cancer models in preclinical research: A chronicle review of advancement in effective cancer research. Animal Model Exp Med. 2021;4(2):87–103. https://doi.org/10.1002/ame2.12165
3. Galagudza MM, Gushchin YaA, Isakova-Sivak IN, Karal-Ogly DD, Kovaleva MA, Lovat ML, et al. Methodology of preclinical studies. In: Makarov VG, Shestakov VN, eds. GLP-planet consultant. Opinion of the pharmaceutical industry. Moscow: Russkiy Vrach Publishing House; 2021. P. 56–73 (In Russ.). https://doi.org/10.29296/978-5-7724-0177-4-s3
4. Kitaeva KV, Rizvanov AA, Solovyeva VV. Modern methods of preclinical anticancer drug screening using test systems based on cell cultures. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki. 2021;163(2):155–76. https://doi.org/10.26907/2542-064X.2021.2.155-176
5. Lee MW, Miljanic M, Triplett T, Ramirez C, Aung KL, Eckhardt SG, Capasso A. Current methods in translational cancer research. Cancer Metastasis Rev. 2021;40(1):7–30. https://doi.org/10.1007/s10555-020-09931-5
6. Mahalmani V, Sinha S, Prakash A, Medhi B. Translational research: Bridging the gap between preclinical and clinical research. Indian J Pharmacol. 2022;54(6):393–6. https://doi.org/10.4103%2Fijp.ijp_860_22
7. Hay RJ, Reid YA, McClintock PR, Chen TR, Macy ML. Cell line banks and their role in cancer research. J Cell Biochem Suppl. 1996;24:107–30. https://doi.org/10.1002/jcb.240630507
8. Mirabelli P, Coppola L, Salvatore M. Cancer cell lines are useful model systems for medical research. Cancers (Basel). 2019;11(8):1098. https://doi.org/10.3390/cancers11081098
9. Yu C, Mannan AM, Yvone GM, Ross KN, Zhang YL, Marton MA, et al. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines. Nat Biotechnol. 2016;34(4):419–23. https://doi.org/10.1038/nbt.3460
10. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–7. https://doi.org/10.1038/nature11003
11. Yang X, Wen Y, Song X, He S, Bo X. Exploring the classification of cancer cell lines from multiple omic views. PeerJ. 2020;8:e9440. https://doi.org/10.7717/peerj.9440
12. Amereh M, Akbari M. Immunohistochemistry (IHC) staining of in-vitro cancer cell-generated tumoroids. MethodsX. 2023;10:102242. https://doi.org/10.1016/j.mex.2023.102242
13. Mentink A, Isebia KT, Kraan J, Terstappen L, Stevens M. Measuring antigen expression of cancer cell lines and circulating tumour cells. Sci Rep. 2023;13(1):6051. https://doi.org/10.1038/s41598-023-33179-y
14. Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative stress in cancer. Cancer Cell. 2020;38(2):167–97. https://doi.org/10.1016/j.ccell.2020.06.001
15. Rockwell S. In vivo-in vitro tumour cell lines: Characteristics and limitations as models for human cancer. Br J Cancer Suppl. 1980;4:118–22. PMID: 6932914
16. Pinho JO, Matias M, Godinho-Santos A, Amaral JD, Mendes E, Perry MJ, et al. A step forward on the in vitro and in vivo assessment of a novel nanomedicine against melanoma. Int J Pharm. 2023;640:123011. https://doi.org/10.1016/j.ijpharm.2023.123011
17. Almutairi MS, Hassan ES, Keeton AB, Piazza GA, Abdelhameed AS, Attia MI. Antiproliferative activity and possible mechanism of action of certain 5-methoxyindole tethered C-5 functionalized isatins. Drug Des Devel Ther. 2019;13:3069–78. https://doi.org/10.2147/dddt.s208241
18. Ediriweera MK, Tennekoon KH, Samarakoon SR. In-vitro anti-proliferative assays and techniques used in pre-clinical anti-cancer drug discovery. Frontiers in Anti-Cancer Drug Discovery. 2019;10:43–61. https://doi.org/10.2174/9789811400711119100005
19. Mishra R, Mishra PS, Varshney S, Mazumder R, Mazumder A. In vitro and in vivo approaches for screening the potential of anticancer agents: A review. Curr Drug Discov Technol. 2022;19(3):e060122200071. https://doi.org/10.2174/1570163819666220106122811
20. Afanaseva AN, Saparova VB, Selmenskikh TA, Makarenko IE. Optimal choice method of detection of the viability of cell cultures for tests on proliferation and cytotoxicity. Laboratory Animals for Science. 2021;(2)16–24 (In Russ.). https://doi.org/10.29296/2618723X-2021-02-03
21. Dadmehr M, Mortezaei M, Korouzhdehi B. Dual mode fluorometric and colorimetric detection of matrix metalloproteinase MMP-9 as a cancer biomarker based on AuNPs@gelatin/AuNCs nanocomposite. Biosens Bioelectron. 2023;220:114889. https://doi.org/10.1016/j.bios.2022.114889
22. Batool S, Javaid S, Javed H, Asim L, Shahid I, Khan M, Muhammad A. Addressing artifacts of colorimetric anticancer assays for plant-based drug development. Med Oncol. 2022;39(12):198 https://doi.org/10.1007/s12032-022-01791-z
23. Cobaleda C, Sánchez-García I. Leukemia stem cell drug discovery. Methods Mol Biol. 2021;2185:39–48. https://doi.org/10.1007/978-1-0716-0810-4_3
24. Nakamura D. The evaluation of tumorigenicity and characterization of colonies in a soft agar colony formation assay using polymerase chain reaction. Sci Rep. 2023;13:5405. https://doi.org/10.1038/s41598-023-32442-6
25. Bobadilla AVP, Arévalo J, Sarró E, Byrne HM, Maini PK, Carraro T, et al. In vitro cell migration quantification method for scratch assays. J R Soc Interface. 2019;16(151):20180709. https://doi.org/10.1098/rsif.2018.0709
26. Cheon D-J, Orsulic S. Mouse models of cancer. Annu Rev Pathol. 2011;6:95–119. https://doi.org/10.1146/annurev.pathol.3.121806.154244
27. Rivina L, Schiestl R. Mouse models of radiation-induced cancers. Adv Genet. 2013;84:83–122. https://doi.org/10.1016/b978-0-12-407703-4.00003-7
28. Li Z, Zheng W, Wang H, Cheng Y, Fang Y, Wu F, et al. Application of animal models in cancer research: Recent progress and future prospects. Cancer Manag Res. 2021;13:2455–75. https://doi.org/10.2147/CMAR.S302565
29. Yusuf K, Umar S, Ahmed I. Animal models in cancer research. In: Pathak S, Banerjee A, Bisgin A, eds. Handbook of animal models and its uses in cancer research. Singapore: Springer; 2023. https://doi.org/10.1007/978-981-19-3824-5_17
30. Chen X, Li Y, Yao T, Jia R. Benefits of zebrafish xenograft models in cancer research. Front Cell Dev Biol. 2021;9:616551. https://doi.org/10.3389/fcell.2021.616551
31. Gamble JT, Elson DJ, Greenwood JA, Tanguay RL, Kolluri SK. The zebrafish xenograft models for investigating cancer and cancer therapeutics. Biology (Basel). 2021;10(4):252. https://doi.org/10.3390/biology10040252
32. Schachtschneider KM, Schwind RM, Newson J, Kinachtchouk N, Rizko M, Mendoza-Elias N, et al. The oncopig cancer model: An innovative large animal translational oncology platform. Front Oncol. 2017;7:190. https://doi.org/10.3389/fonc.2017.00190
33. Bailey KL, Carlson MA. Porcine models of pancreatic cancer. Front Oncol. 2019;9:144. https://doi.org/10.3389/fonc.2019.00144
34. Kalla D, Kind A, Schnieke A. Genetically engineered pigs to study cancer. Int J Mol Sci. 2020;21(2):488. https://doi.org/10.3390/ijms21020488
35. Robertson N, Schook LB, Schachtschneider KM. Porcine cancer models: Potential tools to enhance cancer drug trials. Expert Opin Drug Discov. 2020;15(8):893–902. https://doi.org/10.1080/17460441.2020.1757644
36. Simmons HA, Mattison JA. The incidence of spontaneous neoplasia in two populations of captive rhesus macaques (Macaca mulatta). Antioxid Redox Signal. 2011;14(2):221–7. https://doi.org/10.1089/ars.2010.3311
37. Chapman KL, Pullen N, Andrews L, Ragan I. The future of non-human primate use in mAb development. Drug Discov Today. 2010;15(5–6):235–42. https://doi.org/10.1016/j.drudis.2010.01.002
38. Deycmar S, Gomes B, Charo J, Ceppi M, Cline JM. Spontaneous, naturally occurring cancers in non-human primates as a translational model for cancer immunotherapy. J Immunother Cancer. 2023;11(1):e005514. https://doi.org/10.1136/jitc-2022-005514
39. Dewi FN, Cline JM. Nonhuman primate model in mammary gland biology and neoplasia research. Lab Anim Res. 2021;37(1):3. https://doi.org/10.1186/s42826-020-00053-1
40. Pisano M, Cheng Y, Sun F, Dhakal B, D’Souza A, Chhabra S, et al. Laboratory mice — a driving force in immunopatholo gy and immunotherapy studies of human multiple myeloma. Front Immunol. 2021;12:667054. https://doi.org/10.3389/fimmu.2021.667054
41. Sargent JK, Warner MA, Low BE, Schott WH, Hoffert T, Coleman D, et al. Genetically diverse mouse platform to xenograft cancer cells. Dis Model Mech. 2022;15(9):dmm049457. https://doi.org/10.1242/dmm.049457
42. Onaciu A, Munteanu R, Munteanu VC, Gulei D, Raduly L, Feder RI, et al. Spontaneous and induced animal models for cancer research. Diagnostics (Basel). 2020;10(9):660. https://doi.org/10.3390/diagnostics10090660
43. Hoffmann J. Integrative oncology drug discovery accompanied by preclinical translational research as prerequisite for clinical development. Chin Clin Oncol. 2014;3(2):15. https://doi.org/10.3978/j.issn.2304-3865.2014.05.09
44. Durinikova E, Buzo K, Arena S. Preclinical models as patients’ avatars for precision medicine in colorectal cancer: Past and future challenges. J Exp Clin Cancer Res. 2021;40(1):185. https://doi.org/10.1186/s13046-021-01981-z
45. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013
46. Guerin MV, Finisguerra V, Van den Eynde BJ, Bercovici N, Trautmann A. Preclinical murine tumor models: A structural and functional perspective. Elife. 2020;9:e50740. https://doi.org/10.7554/elife.50740
47. Kemp CJ. Animal models of chemical carcinogenesis: Driving breakthroughs in cancer research for 100 years. Cold Spring Harb Protoc. 2015;(10):865–74. https://doi.org/10.1101/pdb.top069906
48. Oka K, Fujioka S, Kawamura Y, Komohara Y, Chujo T, Sekiguchi K, et al. Resistance to chemical carcinogenesis induction via a dampened inflammatory response in naked mole-rats. Commun Biol. 2022;5(1):287. https://doi.org/10.1038/s42003-022-03241-y
49. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Chemical agents and related occupations. Lyon: International Agency for Research on Cancer; 2012.
50. Naito T, Higuchi T, Shimada Y, Kakinuma C. An improved mouse orthotopic bladder cancer model exhibiting progression and treatment response characteristics of human recurrent bladder cancer. Oncol Lett. 2020;19(1):833–9. https://doi.org/10.3892/ol.2019.11172
51. Khanna C, Hunter K. Modeling metastasis in vivo. Carcinogenesis. 2005;26(3):513–23. https://doi.org/10.1093/carcin/bgh261
52. Liu Y, Wu W, Cai C, Zhang H, Shen H, Han Y. Patient-derived xenograft models in cancer therapy: Technologies and applications. Signal Transduct Target Ther. 2023;8(1):160. https://doi.org/10.1038/s41392-023-01419-2
53. Richmond A, Su Y. Mouse xenograft models vs GEM models for human cancer therapeutics. Dis Model Mech. 2008;1(2–3):78–82. https://doi.org/10.1242/dmm.000976
54. Tian H, Lyu Y, Yang Y-G, Hu Z. Humanized rodent models for cancer research. Front Oncol. 2020;10:1696. https://doi.org/10.3389/fonc.2020.01696
55. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–30. https://doi.org/10.1038/nature21349
56. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat Rev Immunol. 2020;20(11):651–68. https://doi.org/10.1038/s41577-020-0306-5
57. Esfahani K, Roudaia L, Buhlaiga N, Del Rincon SV, Papneja N, Miller WH Jr. A review of cancer immunotherapy: From the past, to the present, to the future. Curr Oncol. 2020;27(Suppl 2):S87–S97. https://doi.org/10.3747/co.27.5223
58. Cogels MM, Rouas R, Ghanem GE, Martinive P, Awada A, Van Gestel D, Krayem M. Humanized mice as a valuable pre-clinical model for cancer immunotherapy research. Front Oncol. 2021;11:784947. https://doi.org/10.3389/fonc.2021.784947
59. Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: Progress, promise and challenges. Nat Rev Immunol. 2012;12(11):786–98.https://doi.org/10.1038/nri3311
60. Tan JHL, Hwang YY, Chin HX, Liu M, Tan SY, Chen Q. Towards a better preclinical cancer model — human immune aging in humanized mice. Immun Ageing. 2023;20(1):49. https://doi.org/10.1186/s12979-023-00374-4
61. Hu Z, Yang YG. Human lymphohematopoietic reconstitution and immune function in immunodeficient mice receiving cotransplantation of human thymic tissue and CD34(+) cells. Cell Mol Immunol. 2012;9(3):232–6. https://doi.org/10.1038/cmi.2011.63
62. McIntosh BE, Brown ME, Duffin BM, Maufort JP, Vereide DT, Slukvin II, Thomson JA. Nonirradiated NOD,B6.SCID Il2rγ-/- Kit W41/W41 (NBSGW) mice support multilineage engraftment of human hematopoietic cells. Stem Cell Reports. 2015;4(2):171–80. https://doi.org/10.1016/j.stemcr.2014.12.005
63. Jin J, Yoshimura K, Sewastjanow-Silva M, Song S, Ajani JA. Challenges and prospects of patient-derived xenografts for cancer research. Cancers (Basel). 2023;15(17):4352. https://doi.org/10.3390/cancers15174352
64. He M, Henderson M, Muth S, Murphy A, Zheng. Preclinical mouse models for immunotherapeutic and non-immunotherapeutic drug development for pancreatic ductal adenocarcinoma. Ann Pancreat Cancer. 2020;3:7. https://doi.org/10.21037/apc.2020.03.03
65. Long Y, Xie B, Shen HC, Wen D. Translation potential and challenges of in vitro and murine models in cancer clinic. Cells. 2022;11(23):3868. https://doi.org/10.3390/cells11233868
66. Li Q-X, Feuer G, Ouyang X, An X. Experimental animal modeling for immuno-oncology. Pharmacol Ther. 2017;173:34–46. https://doi.org/10.1016/j.pharmthera.2017.02.002
67. Brennan TV, Lin L, Huang X, Yang Y. Generation of luciferase-expressing tumor cell lines. Bio Protoc. 2018;8(8):e2817. https://doi.org/10.21769/BioProtoc.2817
68. Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes. J Biomed Opt. 2001;6(4):432–40. https://doi.org/10.1117/1.1413210
69. Levchuk KA, Bogdanova DA, Ershova AE, Smirnov SV, Goldaeva AA, Vasuytina ML, et al. Direct comparison of KATUSHKA far-red fluorescent protein variants with luciferase bioluminescence in xenograft mouse models of epithelial tumor studies. Translational Medicine. 2022;9(6):59–70 (In Russ.). https://doi.org/10.18705/2311-4495-2022-9-6-59-70
70. Choi YJ, Ramos SC, Sim HB, Han JY, Park DH, Mun SK, Lee JB, Lee CH, Lee YA, Kim JJ. Promising approach for optimizing in vivo fluorescence imaging in a tumor mouse model: Precision in cancer research. Anticancer Research.2024;44(10):4347–58. https://doi.org/10.21873/anticanres.17264
71. Diao S, Hong G, Antaris AL, Blackburn JL, Cheng K, Cheng Z, et al. Biological imaging without autofluorescence in the second near-infrared region. Nano Res. 2015;8:3027–34. https://doi.org/10.1007/s12274-015-0808-9
72. Paster EV, Villines KA, Hickman DL. Endpoints for mouse abdominal tumor models: refinement of current criteria. Comp Med. 2009;59(3):234–41. PMCID: PMC2733284
73. Silva-Reis R, Faustino-Rocha AI, Gonçalves M, Ribeiro CC, Ferreira T, Ribeiro-Silva C, et al. Refinement of animal model of colorectal carcinogenesis through the definition of novel humane endpoints. Animals (Basel). 2021;11(4):985. https://doi.org/10.3390/ani11040985
74. Winn CB, Hwang SK, Morin J, Bluette CT, Manickam B, Jiang ZK, et al. Automated monitoring of respiratory rate as a novel humane endpoint: A refinement in mouse metastatic lung cancer models. PLoS One. 2021;16(9):e0257694. https://doi.org/10.1371/journal.pone.0257694
Supplementary files
Review
For citations:
Vasyutina M.L., Lepik K.V., Istomina M.S., Levchuk K.A., Petukhov A.V., Shchelina E.V., Ershova A.E., Demidov O.N., Toropova Ya.G. Methods for Preclinical Assessment of the Efficacy of Anticancer Medicines in vivo (Review). Regulatory Research and Medicine Evaluation. 2025;15(3):289-300. (In Russ.) https://doi.org/10.30895/1991-2919-2025-655