Preview

Regulatory Research and Medicine Evaluation

Advanced search

Influence of α2-Adrenoreceptor Antagonists on Electroencephalogram Characteristics after Dexmedetomidine Administration in Rabbits

https://doi.org/10.30895/1991-2919-2023-13-1-51-59

Abstract

The humane treatment of laboratory animals is an integral part of good laboratory practice. It remains relevant to study the anaesthetic effects of various medicinal products helping to reduce pain and distress in laboratory animals.

The aim of the study was to compare the effects of the α2 blockers proroxan and atipamezole on changes in electroencephalogram rhythm index ratios after dexmedetomidine administration.

Materials and methods. The study used male Soviet chinchilla rabbits weighing 3.0±0.3 kg (n=12). Study animals received single injections of 100 μg/kg dexmedetomidine subcutaneously, 50 μg/kg atipamezole intramuscularly, and 170 μg/kg proroxan intravenously (equimolar to the dose of dexmedetomidine). The effects of these medicinal products were evaluated by pharmacoelectroencephalography. The authors recorded electroencephalograms using cup electrodes and a Neuron-Spectrum-1 8-channel encephalograph (Neurosoft, Russia)  with  a  bandwidth of 0.5–35 Hz and a sampling frequency of 500 Hz. The distribution of quantitative characteristics was checked for normality using the Shapiro–Wilk W test. The authors used one-way ANOVA with Dunnett’s post hoc test to evaluate the significance of differences for the normal distribution of quantitative characteristics; they used the nonparametric Kruskal–Wallis test with  Dunn’s  post  hoc  test  for the non-normal one.

Results. Dexmedetomidine administration resulted in significant two-hour changes in the rabbit brain, and the authors observed an increase in the delta rhythm and     a decrease in the theta rhythm. At equimolar doses, atipamezole returned the ratios of the wave rhythm indices to the baseline values, whereas proroxan had no effect on the ratios.

Conclusions. As demonstrated by the neutralisation of dexmedetomidine sedative and hypnotic effects, atipamezole can be used in veterinary for recovery from anaesthesia. Proroxan, on the contrary, is not effective in reversing the sedative effect of dexmedetomidine.

About the Authors

A. Yu. Grishina
Saint Petersburg State Chemical and Pharmaceutical University
Russian Federation

Anna Yu. Grishina.

14A Professor Popov St., St Petersburg 197376



U. V. Sharkova
Saint Petersburg State Chemical and Pharmaceutical University
Russian Federation

Ulyana V. Sharkova.

14A Professor Popov St., St Petersburg 197376



Yu. I. Sysoev
Saint Petersburg State Chemical and Pharmaceutical University
Russian Federation

Yuriy I. Sysoev - Cand. Sci. (Biol.).

14A Professor Popov St., St Petersburg 197376



D. Yu. Ivkin
Saint Petersburg State Chemical and Pharmaceutical University
Russian Federation

Dmitry Yu. Ivkin - Cand. Sci. (Biol.), Associate Professor.

14A Professor Popov St., St Petersburg 197376



I. A. Nikitina
Saint Petersburg State Chemical and Pharmaceutical University
Russian Federation

Inga A. Nikitina.

14A Professor Popov St., St Petersburg 197376



N. A. Anisimova
Saint Petersburg State Chemical and Pharmaceutical University
Russian Federation

Natalya A. Anisimova - Cand. Sci. (Biol.), Associate Professor.

14A Professor Popov St., St Petersburg 197376



V. P. Ilnitskiy
Saint Petersburg State Chemical and Pharmaceutical University
Russian Federation

Vasiliy P. Ilnitskiy.

14A Professor Popov St., St Petersburg 197376



E. I. Eletskaya
Saint Petersburg State Chemical and Pharmaceutical University
Russian Federation

Elizaveta I. Eletskaya.

14A Professor Popov St., St Petersburg 197376



S. V. Okovityi
Saint Petersburg State Chemical and Pharmaceutical University
Russian Federation

Sergey V. Okovityi - Dr. Sci. (Med.), Professor.

14A Professor Popov St., St Petersburg 197376



References

1. Vachon P, Dupras J, Prout R, Blais D. EEG recordings in anesthetized rabbits: comparison of ketamine-midazolam and telazol with or without xylazine. J Am Assoc Lab Anim Sci. 1999;38(3):57–61.

2. Jameson LC, Sloan TB. Using EEG to monitor anesthesia drug effects during surgery. J Clin Monit Comput. 2006;20(6):445–72. https://doi.org/10.1007/s10877-006-9044-x

3. Tong S, Thakor NV. Quantitative EEG analysis methods and clinical applications. Norwood: Artech House; 2009.

4. Weerink MAS, Struys MMRF, Hannivoort LN, Barends CRM, Absalom AR, Colin P. Clinical pharmacokinetics and pharmacodynamics of dexmedetomidine. Clin Pharmacokinet. 2017;56(8):893–913. https://doi.org/10.1007/s40262-017-0507-7

5. Ramadhyani U, Park JL, Carollo DS, Waterman RS, Nossaman BD. Dexmedetomidine: clinical application as an adjunct for intravenous regional anesthesia. Anesthesiol Clin. 2010;28(4):709–22. https://doi.org/10.1016/j.anclin.2010.08.008

6. Tonner PH. Alpha 2-adrenoceptor agonists in anaesthesia. In: Euroanaesthesia: Refresher course lectures. Glasgow; 2003. P. 43–9.

7. Lee S. Dexmedetomidine: present and future directions. Korean J Anesthesiol. 2019;72(4):323–30. https://doi.org/10.4097/kja.19259

8. Afonso J, Reis F. Dexmedetomidine: current role in anesthesia and intensive care. Rev Bras Anestesiol. 2012;62(1):118–33. https://doi.org/10.1016/S0034-7094(12)70110-1

9. Kirihara Y, Takechi M, Kurosaki K, Matsuo H, Kajitani N, Saito Y. Effects of an anesthetic mixture of medetomidine, midazolam, and butorphanol and antagonism by atipamezole in rabbits. Exp Anim. 2019;68(4):443–52. https://doi.org/10.1538/expanim.18-0183

10. Roshchina LF. Effect of clopheline on bioelectrical activity of the brain. Pharmacology and Toxicology. 1980;(3):306–10 (In Russ.).

11. Siegenthaler J, Pleyers T, Raillard M, Spadavecchia C, Levionnois OL. Effect of medetomidine, dexmedetomidine, and their reversal with atipamezole on the nociceptive withdrawal reflex in beagles. Animals (Basel). 2020;10(7):1240. https://doi.org/10.3390/ani10071240

12. Bruniges N, Yates D. Effects of atipamezole dosage and timing of administration on recovery time and quality in cats following injectable anaesthesia incorporating ketamine. J Feline Med Surg. 2020;22(6):589–97. https://doi.org/10.1177/1098612X19868547

13. Jang HS, Choi HS, Lee SH, Jang KH, Lee MG. Evaluation of the anaesthetic effects of medetomidine and ketamine in rats and their reversal with atipamezole. Vet Anaesth Analg. 2009;36(4):319–27. https://doi.org/10.1111/j.1467-2995.2009.00463.x

14. Kozlov IA. Dexmedetomidine in anesthetic and resuscitative care during cardiac surgery. Part 1. Overview of α2-adrenoceptors agonists and its pharmacodynamics. Cardiology and Cardiovascular Surgery. 2014;7(3):63–73 (In Russ.).


Supplementary files

Review

For citations:


Grishina A.Yu., Sharkova U.V., Sysoev Yu.I., Ivkin D.Yu., Nikitina I.A., Anisimova N.A., Ilnitskiy V.P., Eletskaya E.I., Okovityi S.V. Influence of α2-Adrenoreceptor Antagonists on Electroencephalogram Characteristics after Dexmedetomidine Administration in Rabbits. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2023;13(1):51-59. (In Russ.) https://doi.org/10.30895/1991-2919-2023-13-1-51-59

Views: 499


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-3062 (Print)
ISSN 3034-3453 (Online)