Preview

Regulatory Research and Medicine Evaluation

Advanced search

Elemental Composition of Kelp Thalli (Laminariae thalli) of Various Origins

https://doi.org/10.30895/1991-2919-2023-527

Abstract

Brown seaweeds (Laminariaceae) vary considerably in the content of toxic and essential elements; these variations depend on the taxonomic group and geographical factors. Seaweeds are extensively used in the food industry and widely applied in medicine for both humans and animals. Therefore, it is relevant to examine the correlation between the elemental composition and the geographical origin of kelp thalli obtained from different sources.

The aim of the study was to collect, collate, and analyse primary and secondary data on the accumulation of essential, toxic and potentially carcinogenic elements, including iodine, in the thalli of brown seaweeds (Laminariaceae).

Materials and methods. This study investigated the concentrations of 17 elements in Laminaria spp. (Al, As, Cd, Cr, Co, Cu, Fe, Hg, Mn, Mo, Ni, Se, Pb, Sr, V, Zn, and I). Experiments were conducted on an Agilent 7900 inductively coupled plasma mass spectrometer. The authors studied publications on the elemental composition of brown seaweeds (Laminariaceae) using literature search and data analysis methods.

Results. This article reflects the updated classification of brown seaweeds (Laminariaceae) and summarises information about the mechanisms by which iodine and other elements accumulate in the thallus. The authors established species-specific variations in the order of element uptake and in the accumulation of elemental toxicants. The mutual influence of elements on their accumulation in brown seaweeds (Laminariaceae) was evaluated using Spearman’s rank correlation coefficients.

Conclusions. The study results can inform the implementation of a risk-based quality control strategy for herbal medicinal products aimed at reducing human exposure to toxic elements. The authors suggest that the upper limit of iodine content in kelp-based food products should be standardised.

About the Authors

V. M. Shchukin
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Victor M. Shchukin

8/2 Petrovsky Blvd, Moscow 127051



E. A. Khorolskaya
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Elena A. Khorolskaya

Elena A. Khorolskaya

8/2 Petrovsky Blvd, Moscow 127051



N. E. Kuz’mina
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Natalia E. Kuz’mina - Dr. Sci. (Chem.).

8/2 Petrovsky Blvd, Moscow 127051



I. P. Remezova
Pyatigorsk Medical and Pharmaceutical Institute, Branch of the Volgograd State Medical University
Russian Federation

Irina P. Remezova - Dr. Sci. (Pharm.), Professor.

33 Kirov Ave., Pyatigorsk 357500



V. V. Kosenko
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Valentina V. Kosenko - Cand. Sci. (Pharm.).

8/2 Petrovsky Blvd, Moscow 127051



References

1. Bartsch I, Wiencke C, Bischof K, Buchholz CM, Buck BH, Eggert A, et al. The genus Laminaria sensu lato: recent insights and developments. Eur J Phycol. 2008;43(1):1–86. https://doi.org/10.1080/09670260701711376

2. Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzias G, et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature. 2010;465(7298):617–21. https://doi.org/10.1038/nature09016

3. Podkorytova AV, Roshchina AN. Marine brown algae— perspective source of BAS for medical, pharmaceutical and food use. Trudy VNIRO. 2021;186:156–72 (In Russ.). https://doi.org/10.36038/2307-3497-2021-186-156-172

4. Purcell-Meyerink D, Packer MA, Wheeler TT, Hayes M. Aquaculture production of the brown seaweeds Laminaria digitata and Macrocystis pyrifera: applications in food and pharmaceuticals. Molecules. 2021;26(5):1306. https://doi.org/10.3390/molecules26051306

5. Podkorytova AV, Roshchina AN, Burova NV. Algae-macrophytes of the coastal zones of the seas of the northern fishery basin: harvesting, processing, justification of their integrated use. In: Innovative directions of integration of science, education and production. Kerch; 2020. P. 271–6 (In Russ.). EDN: FPDOBA

6. Jimenez-Lopez C, Pereira AG, Lourenço-Lopes C, Garcia-Oliveira P, Cassani L, Fraga-Corral M, et al. Main bioactive phenolic compounds in marine algae and their mechanisms of action supporting potential health benefits. Food Chem. 2021;341(Pt 2):128262. https://doi.org/10.1016/j.foodchem.2020.128262

7. Турова АД. Лекарственные растения СССР и их применение. М.: Медицина; 1974. Turova AD. Medicinal plants of the USSR and their application. Moscow: Meditsina; 1974 (In Russ.).

8. Wang X, Zhang L, Qin L, Wang Y, Chen F, Qu C, et al. Physicochemical properties of the soluble dietary fiber from Laminaria japonica and its role in the regulation of type 2 diabetes mice. Nutrients. 2022;14(2):329. https://doi.org/10.3390/nu14020329

9. Blikra MJ, Henjum S, Aakre I. Iodine from brown algae in human nutrition, with an emphasis on bioaccessibility, bioavailability, chemistry, and effects of processing: a systematic review. Compr Rev Food Sci Food Saf. 2022;21(2):1517–36. https://doi.org/10.1111/1541-4337.12918

10. Demidova MA, Petrova MB, Savchuk IA. Effect of extract Laminaria Japanese on structure and function of thyroid gland. Modern Problems of Science and Education. 2012;(2):84 (In Russ.). EDN: OXCKOV

11. Rykova SM. The use of herbal remedies in treatment of constipation. Difficult Patient. 2018;16(6):26–33 (In Russ.). EDN: XYQDOX

12. Burkitova AM, Bolotskikh VM. Combined method of preparing the cervix uteri for labor in pregnant women with a lack of birth preparedness and a tendency to post-term pregnancy. Journal of Obstetrics and Women’s Diseases. 2021;70(4):5–13 (In Russ.). https://doi.org/10.17816/JOWD64499

13. Shvetsov IS. Application hemostatic agents. Possibilities and prospects of sodium alginate and chitosan. Modern Science: Actual Problems of Theory and Practice. Series: Natural and Technical Sciences. 2021;(5):230–5 (In Russ.). https://doi.org/10.37882/2223-2966.2021.05.35

14. Reshma BS, Aavula T, Narasimman V, Ramachan dran S, Essa MM, Qoronfleh MW. Antioxidant and antiaging properties of agar obtained from brown seaweed Laminaria digitata (Hudson) in D-galactose-induced Swiss albino mice. Evid Based Complement Alternat Med. 2022;2022:7736378. https://doi.org/10.1155/2022/7736378

15. Jang EJ, Kim SC, Lee JH, Lee JR, Kim IK, Baek SY, et al. Fucoxanthin, the constituent of Laminaria japonica, triggers AMPK-mediated cytoprotection and autophagy in hepatocytes under oxidative stress. BMC Complement Altern Med. 2018;18(1):1–11. https://doi.org/10.1186/s12906-018-2164-2

16. Paz S, Rubio C, Frías I, Luis-González G, Gutiérrez ÁJ, González-Weller D, et al. Human exposure assessment to macroand trace elements in the most consumed edible seaweeds in Europe. Environ Sci Pollut Res Int. 2019;26(36):36478–85. https://doi.org/10.1007/s11356-019-06713-7

17. Hou X, Yan X. Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae. Sci Total Environ. 1998;222(3):141–56. https://doi.org/10.1016/S0048-9697(98)00299-X

18. Podkorytova AV, Roshchina AN, Evseeva NV, Usov AI, Golovin GYu, Popov AM. Brown algae of the orders Laminariales and Fucales from the Sakhalin-Kuril region: stocks, extraction, use. Trudy VNIRO. 2020;181:235–56 (In Russ.). https://doi.org/10.36038/2307-3497-2020-181-235-256

19. Mæhre HK, Malde MK, Eilertsen KE, Elvevoll EO. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J Sci Food Agric. 2014;94(15):3281–90. https://doi.org/10.1002/jsfa.6681

20. Roleda MY, Skjermo J, Marfaing H, Jónsdóttir R, Rebours C, Gietl A, et al. Iodine content in bulk biomass of wild-harvested and cultivated edible seaweeds: inherent variations determine species-specific daily allowable consumption. Food Chem. 2018;254:333–9. http://dx.doi.org/10.1016/j.foodchem.2018.02.024

21. Bogolitsyn KG, Kaplitsin PA, Ul’yanovskiy NV, Pronina OA. A comprehensive study of the chemical composition of brown algae in the White Sea. Chemistry of Plant Raw Material. 2012;(4):153–60 (In Russ.). EDN: PWEAXP

22. Shokina Y, Kuchina Y, Savkina K, Novozhilova E, Tatcienko K, Shokin G. The use of brown algae Laminaria saccharina in iodine enriched products aimed at preventing iodine deficiency. KnE Life Sci. 2022;135–45. https://doi.org/10.18502/kls.v7i1.10115

23. Luvonga C, Rimmer CA, Yu LL, Lee SB. Determination of total arsenic and hydrophilic arsenic species in seafood. J Food Compost Anal. 2021;96:103729. https://doi.org/10.1016/j.jfca.2020.103729

24. Nazal MK. Marine algae bioadsorbents for adsorptive removal of heavy metals. IntechOpen. 2019;10:1–14. https://doi.org/10.5772/intechopen.80850

25. Lane CE, Mayes C, Druehl LD, Saunders GW. A multigene molecular investigation of the kelp (Laminariales, Phaeophyceae) supports substantial taxonomic re-organization. J Phycol. 2006;42(2):493–512. https://doi.org/10.1111/j.1529-8817.2006.00204.x

26. Haug A. The affinity of some divalent metals to different types of alginates. Acta Chem Scand. 1961;15(8):1794–5. https://doi.org/10.3891/ACTA.CHEM.SCAND.15-1794

27. Santos SC, Ungureanu G, Volf I, Boaventura RA, Botelho CM. Macroalgae biomass as sorbent for metal ions. Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value. 2018;69–112. https://doi.org/10.1016/B978-0-444-63774-1.00003-X

28. Utomo HD, Tan KXD, Choong ZYD, Yu JJ, Ong JJ, Lim ZB. Biosorption of heavy metal by algae biomass in surface water. J Environ Prot Sci. 2016;7(11):1547–60. https://doi.org/10.4236/jep.2016.711128

29. Yang T, Chen ML, Wang JH. Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. Trends Analyt Chem. 2015;66:90–102. https://doi.org/10.1016/j.trac.2014.11.016

30. Volesky B. Biosorption and me. Water Res. 2007;41(18):4017–29. https://doi.org/10.1016/j.watres.2007.05.062

31. Khajavian M, Wood DA, Hallajsani A, Majidian N. Simultaneous biosorption of nickel and cadmium by the brown algae Cystoseira indica characterized by isotherm and kinetic models. Appl Biol Chem. 2019;62(1):1–12. https://doi.org/10.1186/s13765-019-0477-6

32. Kwiatkowska-Marks S, Miłek J, Trawczyńska I. Diffusion of Cd(II), Pb(II) and Zn(II) on calcium alginate beads. Technical Sciences. 2019;1(22):19–34. https://doi.org/10.31648/ts.4345

33. Wang Z, Liu J, Kale GM, Ghadiri M. Ion-exchange kinetics and thermal decomposition characteristics of Fe2+-exchanged alginic acid membrane for the formation of iron oxide nanoparticles. J Mater Sci. 2014;49(20):7151–5. https://doi.org/10.1007/s10853-014-8423-9

34. Ghimire KN, Inoue K, Ohto K, Hayashida T. Adsorption study of metal ions onto crosslinked seaweed Laminaria japonica. Bioresour Technol. 2008;99(1):32–7. https://doi.org/10.1016/j.biortech.2006.11.057

35. Haug A, Smidsrød O. Selectivity of some anionic polymers for divalent metal ions. Acta Chem Scand. 1970;24(3):843–54. https://doi.org/10.3891/ACTA.CHEM.SCAND.24-0843

36. Cechinel MAP, Mayer DA, Pozdniakova TA, Mazur LP, Boaventura RA, de Souza AAU, et al. Removal of metal ions from a petrochemical wastewater using brown macro-algae as natural cation-exchangers. Chem Eng J. 2016;286:1–15. https://doi.org/10.1016/j.cej.2015.10.042

37. Simioni C, Schmidt ÉC, Rover T, dos Santos R, Filipin EP, Pereira DT, et al. Effects of cadmium metal on young gametophytes of Gelidium floridanum: metabolic and morphological changes. Protoplasma. 2015;252(5):1347–59. https://doi.org/10.1007/s00709-015-0768-7

38. Pishchik VN, Vorob’ev NI, Provorov NA, Khomya kov YuV. Mechanisms of plant and microbial adaptation to heavy metals in plant–microbial systems. Microbiology. 2016;85(3):257–71. https://doi.org/10.1134/S0026261716030097

39. Malik A. Metal bioremediation through growing cells. Environ Int. 2004;30(2):261–78. https://doi.org/10.1016/j.envint.2003.08.001

40. Neff JM. Ecotoxicology of arsenic in the marine environment. Environ Toxicol Chem. 1997;16(5):917–27. https://doi.org/10.1002/etc.5620160511

41. Zhao Y, Shang D, Ning J, Zhai Y. Arsenic and cadmium in the marine macroalgae (Porphyra yezoensis and Laminaria Japonica) — forms and concentrations. Chem Speciat Bioavailab. 2012;24(3):197–203. https://doi.org/10.3184/095422912X13404690516133

42. Geiszinger A, Goessler W, Pedersen SN, Francesco ni KA. Arsenic biotransformation by the brown macroalga Fucus serratus. Environ Toxicol Chem. 2001;20(10):2255–62. https://doi.org/10.1002/etc.5620201018

43. Abramova LS, Gershunskaya VV, Kozin AV, Bondarenko DA, Murashev AN. Study of toxicity of arseniccontaining compounds isolated from brown algae Saccharina japonica in laboratory animals. Trudy VNIRO. 2020;181:223–34 (In Russ.). https://doi.org/10.36038/2307-3497-2020-181-223-234

44. Ronan JM, Stengel DB, Raab A, Feldmann J, O’Hea L, Bralatei E, et al. High proportions of inorganic arsenic in Laminaria digitata but not in Ascophyllum nodosum samples from Ireland. Chemosphere. 2017;186:17–23. https://doi.org/10.1016/j.chemosphere.2017.07.076

45. Gall EA, Küpper FC, Kloareg B. A survey of iodine content in Laminaria digitata. Bot Mar. 2004;47(1):30–7. https://doi.org/10.1515/BOT.2004.004

46. Podkorytova AV, Vishnevskaya TI. Sea brown algae — a natural source of iodine. Parapharmaceuticals. 2003;(2):22–3 (In Russ.).

47. Bespalov VG, Nekrasova VB, Skal’ny AV. Yod-Elam — a product from kelp: use in the fight against iodine deficiency diseases: a guide for physicians. St. Petersburg: Nordmedizdat; 2010 (In Russ.).

48. Küpper FC, Carrano CJ. Key aspects of the iodine metabolism in brown algae: a brief critical review. Metallomics. 2019;11(4):756–64. https://doi.org/10.1039/c8mt00327k

49. Lu Y, Suliman S, Hansen HR, Feldmann J. Iodine excretion and accumulation in seaweed-eat ing sheep from Orkney, Scotland. Environ Chem. 2006;3(5):338–44. https://doi.org/10.1071/EN06041

50. Küpper FC, Carpenter LJ, McFiggans GB, Palmer CJ, Waite TJ, Boneberg EM, et al. Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proc Natl Acad Sci USA. 2008;105(19):6954–8. https://doi.org/10.1073/pnas.0709959105

51. Shchukin VM, Zhigilei ES, Erina AA, Shvetsova YuN, Kuz’mina NE, Luttseva AI. Validation of an ICP-MS method for the determination of mercury, lead, cadmium and arsenic in medicinal plants and related drug preparations. Pharm Chem J. 2020;54(9):968–76. https://doi.org/10.1007/s11094-020-02306-8

52. Aminina NM, Vishnevskaya TI. Extraction of biogenic and toxic elements from the kelps growing in the areas of the Japan Sea with different pollution. Izvestiya TINRO. 2011;164:384–91 (In Russ.). EDN: NUUMVD

53. Khristoforova NK, Gamayunova OA, Afanasiev A.P. State of the Kozmin and Wrangel Bays (Peter the Great Bay, Japan Sea): dynamics of pollution with heavy metals. Izvestiya TINRO. 2015;180(1):179–86 (In Russ.). https://doi.org/10.26428/1606-9919-2015-180-179-186

54. Jurković N, Kolb N, Colić I. Nutritive value of marine algae Laminaria japonica and Undaria pinnatifida. Nahrung. 1995;39(1):63–6. https://doi.org/10.1002/food.19950390108

55. Almela C, Algora S, Benito V, Clemente MJ, Devesa V, Suner MA, et al. Heavy metal, total arsenic, and inorganic arsenic contents of algae food products. J Agric Food Chem. 2002;50(4):918–23. https://doi.org/10.1021/jf0110250

56. Van Netten C, Cann SH, Morley DR, van Netten JP. Elemental and radioactive analysis of commercially available seaweed. Sci Total Environ. 2000;255(1– 3):169–75. https://doi.org/10.1016/S0048-9697(00)00467-8

57. Li SX, Lin LX, Zheng FY, Wang QX. Metal bioavailability and risk assessment from edible brown alga Laminaria japonica, using biomimetic digestion and absorption system and determination by ICP–MS. J Agric Food Chem. 2011;59(3):822–8. https://doi.org/10.1021/jf103480y

58. Xu S, Yu Z, Zhou Y, Wang F, Yue S, Zhang X. Insights into spatiotemporal distributions of trace elements in kelp (Saccharina japonica) and seawater of the western Yellow Sea, Northern China. Sci Total Environ. 2021;774:145544. https://doi.org/10.1016/j.scitotenv.2021.145544

59. Asensio JP, Uceda DA, Navarro PJ. Studying inorganic arsenic, heavy metals, and iodine in dried seaweed. Spectroscopy. 2021;36(S9):24–34.

60. Chen Y, Liu YT, Wang FH, Wen D, Yang H, Zhao XL. An investigation of toxic metal levels (Pb, Cd, Cr, As, Hg) in dried Porphyra and Laminaria collected from coastal cities, China. Biol Trace Elem Res. 2021;199(10):3987–97. https://doi.org/10.1007/s12011-020-02509-w

61. Biancarosa I, Belghit I, Bruckner CG, Liland NS, Waagbø R, Amlund H, et al. Chemical characteriza tion of 21 species of marine macroalgae common in Norwegian waters: benefits of and limitations to their potential use in food and feed. J Sci Food Agric. 2018;98(5):2035–42. https://doi.org/10.1002/jsfa.8798

62. Nielsen MM, Manns D, D’Este M, Krause-Jensen D, Rasmussen MB, Larsen MM, et al. Variation in biochemical composition of Saccharina latissima and Laminaria digitata along an estuarine salinity gradient in inner Danish waters. Algal Res. 2016;13:235–45. https://doi.org/10.1016/j.algal.2015.12.003

63. Ahn IY, Kim JH, Ji JY, Choi HJ, Chung H. Metal concentrations in some brown seaweeds from Kongsfjorden on Spitsbergen, Svalbard islands. Ocean Polar Res. 2004;26(2):121–32. https://doi.org/10.4217/OPR.2004.26.2.121

64. Olsson J, Toth GB, Albers E. Biochemical composition of red, green and brown seaweeds on the Swedish west coast. J Appl Phycol. 2020;32(5):3305–17. https://doi.org/10.1007/s10811-020-02145-w

65. Kreissig KJ, Hansen LT, Jensen PE, Wegeberg S, Geertz-Hansen O, Sloth JJ. Characterisation and chemometric evaluation of 17 elements in ten seaweed species from Greenland. PloS One. 2021;16(2):e0243672. https://doi.org/10.1371/journal.pone.0243672

66. Maulvault AL, Anacleto P, Barbosa V, Sloth JJ, Rasmussen RR, Tediosi A, et al. Toxic elements and speciation in seafood samples from different contaminated sites in Europe. Environ Res. 2015;143(Pt B):72–81. https://doi.org/10.1016/j.envres.2015.09.016

67. Voskoboynikov GM, Nikulina AL, Salakhov DO, Shakhverdov VA. Content of trace metals in the brown algae Saccharina latissima from the Barents and Greenland Seas. Science in the South of Russia. 2019;15(2):39–44 (In Russ.). https://doi.org/10.7868/S25000640190205

68. Bruhn A, Brynning G, Johansen A, Lindegaard MS, Sveigaard HH, Aarup B, et al. Fermentation of sugar kelp (Saccharina latissima) — effects on sensory properties, and content of minerals and metals. J Appl Phycol. 2019;31(5):3175–87. https://doi.org/10.1007/s10811-019-01827-4

69. Cabrita ARJ, Maia MR, Oliveira HM, Sousa-Pinto I, Almeida AA, Pinto E, et al. Tracing seaweeds as mineral sources for farm-animals. J Appl Phycol. 2016;28(5):3135–50. https://doi.org/10.1007/s10811-016-0839-y

70. Sharp GJ, Samant HS, Vaidya OC. Selected metal levels of commercially valuable seaweeds adjacent to and distant from point sources of contamination in Nova Scotia and New Brunswick. Bull Environ Contam Toxicol. 1988;40(6):724–30. https://doi.org/10.1007/BF01697522

71. Phaneuf D, Côté I, Dumas P, Ferron LA, LeBlanc A. Evaluation of the contamination of marine algae (seaweed) from the St. Lawrence River and likely to be consumed by humans. Environ Res. 1999;80(2):175–82. https://doi.org/10.1006/enrs.1998.3915

72. Adams JMM, Ross AB, Anastasakis K, Hodgson EM, Gallagher JA, Jones JM, et al. Seasonal variation in the chemical composition of the bioenergy feed stock Laminaria digitata for thermochemical conversion. Bioresour Technol. 2011;102(1):226–34. https://doi.org/10.1016/j.biortech.2010.06.152

73. Schiener P, Black KD, Stanley MS, Green DH. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J Appl Phycol. 2015;27(1):363–73. https://doi.org/10.1007/s10811-014-0327-1

74. Garcia-Vaquero M, Rajauria G, Miranda M, Sweeney T, Lopez-Alonso M, O’Doherty J. Seasonal variation of the proximate composition, mineral content, fatty acid profiles and other phytochemical constituents of selected brown macroalgae. Mar Drugs. 2021;19(4):204. https://doi.org/10.3390/md19040204

75. Ratcliff JJ, Wan AHL, Edwards MD, Soler-Vila A, Johnson MP, Abreu MH, et al. Metal content of kelp (Laminaria digitata) co-cultivated with Atlantic salmon in an Integrated Multi-Trophic Aquaculture system. Aquaculture. 2016;450:234–43. https://doi.org/10.1016/j.aquaculture.2015.07.032

76. García-Sartal C, del Carmen Barciela-Alonso M, Moreda-Piñeiro A, Bermejo-Barrera P. Study of cooking on the bioavailability of As, Co, Cr, Cu, Fe, Ni, Se and Zn from edible seaweed. Microchem J. 2013;108:92–9. https://doi.org/10.1016/j.microc.2012.10.003

77. Moreda-Piñeiro J, Lonso-Rodríguez E, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D, MoredaPiñeiro A, et al. Development of a new sample pre-treatment procedure based on pressurized liquid extraction for the determination of metals in edible seaweed. Anal Сhim Acta. 2007;598(1):95–102. https://doi.org/10.1016/j.aca.2007.07.030

78. Noriega-Fernández E, Sone I, Astráin-Redín L, Prabhu L, Sivertsvik M, Álvarez I, et al. Innovative ultrasound-assisted approaches towards reduction of heavy metals and iodine in macroalgal biomass. Foods. 2021;10(3):649. https://doi.org/10.3390/foods10030649

79. Ervik H. The Kelp Laminaria hyperborea as a bioindicator. Int. J. Water Technol. Treat. Meth. 2019;2(1):1–4. https://doi.org/10.31021/jwt.20192122

80. García-Salgado S, Quijano MA, Bonilla MM. Arsenic speciation in edible alga samples by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry. Anal Chim Acta. 2012;714:38–46. https://doi.org/10.1016/j.aca.2011.12.001

81. Wang X, Shan T, Pang S. Effects of cobalt on spore germination, gametophyte growth and development, and juvenile sporophyte growth of Saccharina japonica (Phaeophyceae). J Appl Phycol. 2020;32(1):511–18. https://doi.org/10.1007/s10811-019-01955-x

82. Konno N, Yuri K, Taguchi H, Miura K, Taguchi S, Hagiwara K, et al. Screening for thyroid diseases in an iodine sufficient area with sensitive thyrotrophin assays, and serum thyroid autoantibody and urinary iodide determinations. Clin Endocrinol. 1993;38(3):273–81. https://doi.org/10.1111/j.1365-2265.1993.tb01006.x

83. Grjibovski AM, Ivanov SV, Gorbatova MA. Ecological (correlation) studies in health sciences. Science and Healthcare. 2015;(5):5–18 (In Russ.). EDN: VCFWAT

84. Kabata-Pendias A. Trace elements in soils and plants. Boca Raton: CRC Press; 2000. https://doi.org/10.1201/b10158


Supplementary files

Review

For citations:


Shchukin V.M., Khorolskaya E.A., Kuz’mina N.E., Remezova I.P., Kosenko V.V. Elemental Composition of Kelp Thalli (Laminariae thalli) of Various Origins. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2023;13(2):154-172. (In Russ.) https://doi.org/10.30895/1991-2919-2023-527

Views: 1030


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-3062 (Print)
ISSN 3034-3453 (Online)