Preview

Regulatory Research and Medicine Evaluation

Advanced search

Regulation of Radiopharmaceutical Products

https://doi.org/10.30895/1991-2919-2022-12-4-379-388

Abstract

The fast development of diagnostic and therapeutic radionuclide technologies requires enhanced legislative regulation of radiopharmaceuticals. The article addresses the challenge of classifying radiopharmaceuticals depending on the manufacturing technology, radionuclide properties, and clinical use. The review covers the current legislative and regulatory requirements for radiopharmaceutical medicinal products. It also describes the trends in radiopharmaceutical regulation development in Russia and the Eurasian Economic Union, taking into account the corresponding legislative frameworks.

About the Authors

V. V. Kosenko
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Valentina V. Kosenko, Cand. Sci. (Pharm.)

127051, Moscow, Petrovsky Blvd, 8/2



A. A. Trapkova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Alla A. Trapkova, Cand. Sci. (Biol.)

127051, Moscow, Petrovsky Blvd, 8/2



S. N. Kalmykov
Lomonosov Moscow State University
Russian Federation

Stepan N. Kalmykov, Dr. Sci. (Chem), Professor, Academician of the Russian Academy of Sciences

119991, Moscow, Leninskie Gory, 1/3



References

1. Buchegger F, Perillo-Adamer F, Dupertuis YM, Bischof Delaloye A. Auger radiation targeted into DNA: a therapy perspective. Eur J Nucl Med Mol Imaging. 2006;33(11): 1352–63. https://doi.org/10.1007/s00259-006-0187-2

2. Qaim SM. Development of novel positron emitters for medical applications: Nuclear and radiochemical aspects. Radiochim Acta. 2011;99(10):611–25. https://doi.org/10.1524/ract.2011.1870

3. Haddad F, Ferrer L, Guertin A, Carlier T, Michel N, Barbet J, Chatal JF. ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine. Eur J Nucl Med Mol Imaging. 2008;35(7):1377–87. https://doi.org/10.1007/s00259-008-0802-5

4. Zhuikov BL, Ermolaev SV, Kokhanyuk VM, Matushko VL, Kalmykov SN, Aliev RA, et al. Production of <sup>225</sup>Ac and <sup>223</sup>Ra by irradiation of Th with accelerated protons. Radiochemistry. 2011;53(1):73–80 https://doi.org/10.1134/S1066362211010103

5. Burahmah N, Griswold JR, Heilbronn LH, Mirzadeh S. Transport model predictions of <sup>225</sup>Ac production cross sections via energetic p, d and α irradiation of <sup>232</sup>Th targets. Appl Radiat Isot. 2021;172:109676. https://doi.org/10.1016/j.apradiso.2021.109676

6. Ermolaev SV, Zhuikov BL, Kokhanyuk VM, Abramov AA, Togaeva NR, Khamianov SV, Srivastava SC. Production of no-carrier-added <sup>117m</sup>Sn from proton irradiated antimony. J Radioanal Nucl Chem. 2009;280(2):319–24. https://doi.org/10.1007/s10967-009-0520-x

7. Baumeister J, Medvedev D, Cutler CS, Jurisson S, Hennkens H, Li Y, et al. Production of <sup>117m</sup>Sn using Sb alloy targetry. Nucl Med Biol. 2021;96–97 (Supplement):S23–S24. https://doi.org/10.1016/S0969-8051(21)00303-6

8. Zhuikov BL. Production of medical radionuclides in Russia: status and future — a review. Appl Radiat Isot. 2014;84:48–56. https://doi.org/10.1016/j.apradiso.2013.11.025

9. Beyer GJ, Сomor JJ, Dakoviс M, Soloviev D, Tamburella C, Hagebo E, et al. Production routes of the alpha emitting <sup>149</sup>Tb for medical application. Radiochim Acta. 2002;90(5):247–52.

10. van der Meulen NP, Vermeulen C, Köster U, Johnston K, Haller S, Schibli R, et al. The use of <sup>149</sup>Tb and <sup>152</sup>Tb in preclinical investigations: an update on its mass separation and subsequent application for imaging and therapy. Radiother Oncol. 2016;118:S106–7. https://doi.org/10.1016/S0167-8140(16)30219-5

11. Qaim SM. New trends in nuclear data research for medical radionuclide production. Radiochim Acta. 2013;101(8): 473–480. https://doi.org/10.1524/ract.2013.2069

12. Pupillo G, Esposito J, Gambaccini M, Haddad F, Michel N. Experimental cross section evaluation for innovative <sup>99</sup>Mo production via the (α,n) reaction on <sup>96</sup>Zr target. J Radioanal Nucl Chem. 2014;302(2):911–17. https://doi.org/10.1007/s10967-014-3321-9

13. Gagnon K, Benard F, Kovacs M, Ruth TJ, Schaffer P, Wilson JS, McQuarrie SA. Cyclotron production of <sup>99</sup>mTc: Experimental measurement of the 100Mo(p,x) <sup>99</sup>Mo, <sup>99</sup>mTc and <sup>99g</sup>Tc excitation functions from 8 to 18 MeV. Nucl Med Biol. 2011;38(6):907–16. https://doi.org/10.1016/j.nucmedbio.2011.02.010

14. Wolterbeek B, Kloosterman J, Lathouwers D, Rohde M, Winkelman A, Frima L, Wols F. What is wise in the production of <sup>99</sup>Mo? A comparison of eight possible production routes. J Radioanal Nucl Chem. 2014;302(2):773–9. https://doi.org/10.1007/s10967-014-3188-9

15. Ma C, Wolterbeek HT, Denkova AG, Serra Crespo P. A cerium-based metal-organic framework as adsorbent for the <sup>99</sup>Mo/<sup>99m</sup>Tc generator. Sep Purif Technol. 2022;295: 121218. https://doi.org/10.1016/j.seppur.2022.121218


Supplementary files

Review

For citations:


Kosenko V.V., Trapkova A.A., Kalmykov S.N. Regulation of Radiopharmaceutical Products. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2022;12(4):379-388. (In Russ.) https://doi.org/10.30895/1991-2919-2022-12-4-379-388

Views: 651


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-3062 (Print)
ISSN 3034-3453 (Online)