Possible Impurities in Radiopharmaceuticals and Corresponding Test Methods
https://doi.org/10.30895/1991-2919-2022-12-3-244-262
Abstract
The main quality attributes of radiopharmaceuticals that ensure their effectiveness and safety and are unique to their specifications are activity, radionuclide identity, radionuclide purity, and radiochemical purity. The aim of this study was to analyse the possibility of formation and methods for determination of various impurities in radiopharmaceuticals based on radionuclides of several groups: technetium-99m and rhenium-188; iodine and fluorine-18 isotopes; and gallium-68 and some other metallic radionuclides used in theranostic schemes combining radionuclide diagnostics and radionuclide therapy. The article analyses the sources for the formation of radionuclide, radiochemical, and chemical impurities; the influence of these impurities on visualisation quality and dosimetric characteristics of radiopharmaceuticals; various approaches to the methods of impurity detection and quantification; compendial requirements to the quality of radiopharmaceuticals; and research results reported in publications. The article demonstrates the need for the development and certification of Russian reference standards for testing quality attributes of radiopharmaceuticals as part of harmonisation of the State Pharmacopoeia of the Russian Federation with the Pharmacopoeia of the Eurasian Economic Union and the European Pharmacopoeia.
Keywords
About the Authors
G. E. KodinaRussian Federation
Galina E. Kodina, Dr. Sci. (Chem.), Assoc. Prof
46 Zhivopisnaya St., Moscow 123098
A. O. Malysheva
Russian Federation
Anna O. Malysheva
46 Zhivopisnaya St., Moscow 123098
A. A. Larenkov
Russian Federation
Anton A. Larenkov, Dr. Sci. (Chem.)
46 Zhivopisnaya St., Moscow 123098
A. B. Bruskin
Russian Federation
Alexander B. Bruskin, Cand. Sci. (Chem.)
46 Zhivopisnaya St., Moscow 123098
References
1. Bornholdt MG, Woelfel KM, Fang P, Jacobson MS, Hung JC. Rapid ITLC system for determining the radiochemical purity of 68Ga-DOTATATE. J Nucl Med Technol. 2018;46(3):285–7. https://doi.org/10.2967/jnmt.117.200873
2. Zolle I., ed. Technetium-99m pharmaceuticals: Preparation and quality control in nuclear medicine. Berlin, Heidelberg, New York: Springer; 2007. https://doi.org/10.1007/978-3-540-33990-8
3. Papagiannopoulou D. Technetium-99m radiochemistry for pharmaceutical applications. J Labelled Comp Radiopharm. 2017;60(11):502–20. https://doi.org/10.1002/jlcr.3531
4. Hou X. Determination of radionuclidic impurities in 99mTc eluate from 99Mo/99mTc generator for quality control. J Radioanal Nucl Chem. 2017;314:659–68. https://doi.org/10.1007/s10967-017-5369-9
5. Hasan S, Prelas MA. Molybdenum 99 production pathways and the sorbents for 99Mo/99mTc generator systems using (n, γ) 99Mo: a review. SN Applied Sciences. 2020;2:1782. https://doi.org/10.1007/s42452-020-03524-1
6. Tsivadze AYu, Filyanin AT, Filyanin OA, Avetisyan AA, Zykov MP, Kodina GE, et al. Radiochemical technology for production of preparations of technetium - 99m on extraction centrifugal semi-countercurrent generator. J Nucl Med Radiol Radiat Ther. 2017;2:007. https://doi.org/10.24966/NMRR-7419/100007
7. Vallabhajosula S, Killeen RP, Osborne JR. Altered biodistribution of radiopharmaceuticals: role of radiochemical/pharmaceutical purity, physiological, and pharmacologic factors. Semin Nucl Med. 2010;40(4):220–41. https://doi.org/10.1053/j.semnuclmed.2010.02.004
8. Opportunities and approaches for supplying molybdenum-99 and associated medical isotopes to global markets. Proceedings of a symposium. National Academies of Sciences, Engineering, and Medicine. Washington (DC): The National Academies Press; 2018. https://doi.org/10.17226/24909
9. Selivanova SV, Lavallée É, Senta H, Caouette L, Sader JA, van Lier EJ, et al. Radioisotopic purity of sodium pertechnetate 99mTc produced with a medium-energy cyclotron: implications for internal radiation dose, image quality, and release specifications. J Nucl Med. 2015;56(10):1600–8. https://doi.org/10.2967/jnumed.115.156398
10. Selivanova SV, Lavallée É, Senta H, Caouette L, McEwan AJB, Guérin B, et al. Clinical trial with sodium 99mTc-pertechnetate produced by a medium-energy cyclotron: biodistribution and safety assessment in patients with abnormal thyroid function. J Nucl Med. 2017;58(5):791–98. https://doi.org/10.2967/jnumed.116.178509
11. Tymiński Z, Saganowski P, Kołakowska E, Listkowska A, Ziemek T, Cacko D, et al. Impurities in Tc-99m radiopharmaceutical solution obtained from Mo-100 in cyclotron. Appl Radiat Isot. 2018;134:85–8. https://doi.org/10.1016/j.apradiso.2017.10.021
12. Andersson JD, Thomas B, Selivanova SV, Berthelette E, Wilson JS, McEwan AJB, et al. Robust high-yield ~1 TBq production of cyclotron based sodium [99mTc]pertechnetate. Nucl Med Biol. 2018;60:63–70. https://doi.org/10.1016/j.nucmedbio.2018.02.003
13. Meléndez-Alafort L, Ferro-Flores G, De Nardo L, Bello M, Paiusco M, Negri A, et al. Internal radiation dose assessment of radiopharmaceuticals prepared with cyclotron-produced 99mTc. Med Phys. 2019;46(3):1437–46. https://doi.org/10.1002/mp.13393
14. Lepareur N, Lacœuille F, Bouvry C, Hindré F, Garcion E, Chérel M, et al. Rhenium-188 labeled radiopharmaceuticals: current clinical applications in oncology and promising perspectives. Front Med (Lausanne). 2019;6:132. https://doi.org/10.3389/fmed.2019.00132
15. Tsivadze AYu, Filyanin AT, Romanovskii VN, Zykov MP, Kodina GE, Malysheva AO, et al. Extraction centrifugal generator of 188Re and radiopharmaceuticals based on it for radionuclide therapy. Radiochemistry. 2016;58(5):513–20 https://doi.org/10.1134/S1066362216050118
16. Zverev AV, Klementieva OE, Zhukova MV, Krasnoperova AS. Preclinical evaluation of the therapeutic potential of a radiopharmaceutical drug based on 5–10 micron albumin microspheres with rhenium-188. RMJ. 2018;4(1):31–5 (In Russ.)
17. Kodina GE, Malysheva AO, Klementyeva OЕ, Taratonenkova NA, Lyamtseva EA, Zhukova MV, et al. «Synoren,188Re» – a promising radiopharmaceutical for radiosynovectomy. Radiatsiya i risk = Radiation and Risk. 2018;27(4):76–86 (In Russ.) https://doi.org/10.21870/0131-3878-2018-27-4-76-86
18. Hammermaier A, Reich E, Biigl W. Chemical, radiochemical, and radionuclide purity of eluates from different commercial fission 99Mo/99mTc generators. Eur J Nucl Med. 1986;12(1):41–6. https://doi.org/10.1007/bf00638794
19. Brandau W, Hotze L-A, Meyer G-J. Radiochemie. In: Bаll U, Schicha H, Biersack H-J, Knapp WH, Reiners Chr, Schober O, eds. Nuklearmedizin. Stuttgart: Georg Thieme; 1996. P. 79–113.
20. Ullah H, Ahmad I, Khattak MR, Shah S, Ahmad S, Khan K, et al. Evaluation of radiochemical purities of routinely used radiopharmaceuticals: Three years’ experience of a single institute. Iran J Nucl Med. 2019;27(1):19–25.
21. Maioli C, Luciniani G, Strinchini A, Tagliabue L, Del Sole A. Quality control on radiochemical purity in Technetium-99m radiopharmaceuticals labelling: three years of experience on 2280 procedures. Acta Biomed. 2017;88(1):49–56.
22. Mang’era K, Wong D, Douglas D, Franz K, Biru T. Evaluation of alternative rapid thin layer chromatography systems for quality control of technetium-99m radiopharmaceuticals. Appl Radiat Isot. 2014;86:57–62. https://doi.org/10.1016/j.apradiso.2013.12.016
23. Ponto JA, Swanson DP, Freitas JE. Clinical manifestations of radiopharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT, eds. Essentials of nuclear medicine science. Baltimore: Williams & Wilkins; 1987. P. 270–4.
24. McCready VR. Radioiodine – the success story of nuclear medicine. Eur J Nucl Med Mol Imaging. 2017;44(2):179–82. https://doi.org/10.1007/s00259-016-3548-5
25. Mishra A, Singh T. Estimation and verification of 131I yield from fission and irradiation of tellurium. Appl Radiat Isot. 2021;168:109535. https://doi.org/10.1016/j.apradiso.2020.109535
26. Smart BE. Fluorine substituent effects (on bioactivity). J of Fluorine Chem. 2001;109(1):3–11. https://doi.org/10.1016/S0022-1139(01)00375-X
27. Chiappiniello A, Iacco M, Rongoni A, Susta F, Sabatini P, Beneventi S, Tarducci R. Assessment of radionuclide impurities in [18F]fluoromethylcholine ([18F]FMCH). Phys Med. 2020;78:150–5. https://doi.org/10.1016/j.ejmp.2020.09.025
28. Bowden L, Vintro LL, Mitchell PI, O’Donnell RG, Seymour AM, Duffy GJ. Radionuclide impurities in proton-irradiated [18O]H2O for the production of 18F: Activities and distribution in the [18F]FDG synthesis process. Appl Radiat Isot. 2009;67(2):248–55. https://doi.org/10.1016/j.apradiso.2008.10.015
29. Siikanen J, Ohlsson T, Medema J, Van-Essen J, Sandell A. A niobium water target for routine production of [18F]Fluoride with a MC 17 cyclotron. Appl Radiat Isot. 2013;72:133–6. https://doi.org/10.1016/j.apradiso.2012.10.011
30. Metzger RL, Lasche GP, Eckerman KF, Leggett RW. Long-lived contaminants in cyclotron-produced radiopharmaceuticals: measurement and dosimetry. J Radioanal Nucl Chem. 2018;318(4):7–10. https://doi.org/10.1007/s10967-018-5970-6
31. Dziel T, Tymiński Z, Sobczyk K, Walęcka-Mazur А, Kozanecki P. Radionuclidic purity tests in 18F radiopharmaceuticals production process. Appl Radiat Isot. 2016;109:242–6. https://doi.org/10.1016/j.apradiso.2015.11.008
32. Savisto N, Bergman J, Aromaa, J, Forsback S, Eskola O, Viljanen T. et al. Influence of transport line material on the molar activity of cyclotron produced [18F]fluoride. Nucl Med Biol. 2018;64–65:8–15. https://doi.org/10.1016/j.nucmedbio.2018.06.004
33. Koziorowski J. A simple method for the quality control of [18F]FDG. Appl Radiat Isot. 2010;68(9):1740–2. https://doi.org/10.1016/j.apradiso.2010.03.006
34. Kuntzsch M, Lamparter D, Brüggener N, Müller M, Kienzle GJ, Reischl G. Development and successful validation of simple and fast TLC spot tests for determination of Kryptofix 2.2.2 and tetrabutylammonium in 18F-labeled radiopharmaceuticals. Pharmaceuticals (Basel). 2014;7(5):621–33. https://doi.org/10.3390/ph7050621
35. Antuganov D, Antuganova Y, Zykova T, Krasikova R. Use of capillary electrophoresis for the determination of impurities in preparations of fluorine-18 labelled PET radiopharmaceuticals. J Pharm Biomed Anal. 2019;173:68–74. https://doi.org/10.1016/j.jpba.2019.05.016
36. Rösch F. and Riss P.J. The reneaissance of the 68Ge/68Ga radionuclide generator initiates new development in 68Ga radiofarmaceutical chemistry. Curr Top Med Chem. 2010;10(16):1633–68. https://doi.org/10.2174/156802610793176738
37. Ambrosini V, Kunikowska J, Baudin E, Bodei L, Bouvier C, Capdevila J, et al. Consensus on molecular imaging and theranostics in neuroendocrine neoplasms. Eur J Cancer. 2021;146:56–73. https://doi.org/10.1016/j.ejca.2021.01.008
38. Lepareur N. Cold kit labeling: the future of 68Ga radiopharmaceuticals? Front Med (Lausanne). 2022;9:812050. https://doi.org/10.3389/fmed.2022.812050
39. Velikyan I. 68Ga-based radiopharmaceuticals: Production and application relationship. Molecules. 2015;20(7):12913–43. https://doi.org/10.3390/molecules200712913
40. Velikyan I. Prospective of 68Ga-radiopharmaceutical development. Theranostics. 2014;4(1):47–80. https://doi.org/10.7150/thno.7447
41. Satpati D. Recent breakthrough in 68Ga-radiopharmaceuticals cold kits for convenient PET radiopharmacy. Bioconjug Chem. 2021;32(3):430–47. https://doi.org/10.1021/ACS.BIOCONJCHEM.1C00010
42. Kumar K. The current status of the production and supply of gallium-68. Cancer Biother Radiopharm. 2020;35(3):163–6. https://doi.org/10.1089/cbr.2019.3301
43. Tsionou MI, Knapp CE, Foley CA, Munteanu CR, Cakebread A, Imberti C, et al. Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling. RSC Adv. 2017;7(78):49586–99. https://doi.org/10.1039/C7RA09076E
44. Spang P, Herrmann C, Roesch F. Bifunctional gallium-68 chelators: past, present, and future. Semin Nucl Med. 2016;46(5):373–94. https://doi.org/10.1053/J.SEMNUCLMED.2016.04.003
45. Burke BP, Clemente GS, Archibald SJ. Recent advances in chelator design and labelling methodology for 68Ga radiopharmaceuticals. J Label Compd Radiopharm. 2014;57(4):239–43. https://doi.org/10.1002/JLCR.3146
46. Kubíček V, Havlíčková J, Kotek J, Tircsó G, Hermann P, Tóth E, et al. Gallium(III) complexes of DOTA and DOTA-Monoamide: Kinetic and thermodynamic studies. Inorg Chem. 2010;49(23):10960–9. https://doi.org/10.1021/ic101378s
47. Wood SA, Samson IM. The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geol Rev. 2006;28(1):57–102. https://doi.org/10.1016/j.oregeorev.2003.06.002
48. Bois F, Noirot C, Dietemann S, Mainta IC, Zilli T, Garibotto V, et al. [68Ga]Ga-PSMA-11 in prostate cancer: a comprehensive review. Am J Nucl Med Mol Imaging. 2020;10(6):349–74. PMID: 33329937
49. Hennrich U, Eder M. [68Ga]Ga-PSMA-11: the first FDA-approved 68Ga-radiopharmaceutical for PET imaging of prostate cancer. Pharmaceuticals (Basel). 2021;14(8):713. https://doi.org/10.3390/PH14080713
50. Eder M, Wängler B, Knackmuss S, LeGall F, Little M, Haberkorn U, et al. Tetrafluorophenolate of HBED-CC: a versatile conjugation agent for 68Ga-labeled small recombinant antibodies. Eur J Nucl Med Mol Imaging. 2008;35(10):1878–86. https://doi.org/10.1007/S00259-008-0816-Z
51. Schuhmacher J, Klivényi G, Hull WE, Matys R, Hauser H, Kalthoff H, et al. A bifunctional HBED-derivative for labeling of antibodies with 67Ga, 111In and 59Fe. Comparative biodistribution with 111In-DPTA and 131I-labeled antibodies in mice bearing antibody internalizing and non-internalizing tumors. Int J Radiat Appl Instrumentation Part B Nucl Med Biol. 1992;19(8):809–24. https://doi.org/10.1016/0883-2897(92)90167-W
52. Schuhmacher J, Klivényi G, Matys R, Stadler M, Regiert T, Hauser H. et al. Multistep tumor targeting in nude mice using bispecific antibodies and a gallium chelate suitable for immunoscintigraphy with positron emission tomography. Cancer Res. 1995;55(1):115–23. PMID: 7805020
53. Eder M, Neels O, Müller M, Eder M, Neels O, Müller M. et al. Novel preclinical and radiopharmaceutical aspects of [68Ga]Ga-PSMA-HBED-CC: a new PET tracer for imaging of prostate cancer. Pharmaceuticals (Basel). 2014;7(7):779–96. https://doi.org/10.3390/ph7070779
54. Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA, et al. Processing of generator-produced 68Ga for medical application. J Nucl Med. 2007;48(10):1741–8. https://doi.org/10.2967/JNUMED.107.040378
55. Mueller D, Klette I, Baum RP, Gottschaldt M, Schultz MK, Breeman WAP. Simplified NaCl based 68Ga concentration and labeling procedure for rapid synthesis of 68Ga radiopharmaceuticals in high radiochemical purity. Bioconjug Chem. 2012;23(8):1712–7. https://doi.org/10.1021/bc300103t
56. Meisenheimer M, Kürpig S, Essler M, Eppard E. Ethanol effects on 68Ga-radiolabelling efficacy and radiolysis in automated synthesis utilizing NaCl post-processing. EJNMMI Radiopharm Chem. 2019;4(1):1–10. https://doi.org/10.1186/S41181-019-0076-1
57. Mu L, Hesselmann R, Oezdemir U, Bertschi L, Blanc A, Dragic M, et al. Identification, characterization and suppression of side-products formed during the synthesis of high dose 68Ga-DOTA-TATE. Appl Radiat Isot. 2013;76:63–9. https://doi.org/10.1016/j.apradiso.2012.07.022
58. Martins AF, Prata MIM, Rodrigues SPJ, Geraldes CF, Riss PJ, et al. Spectroscopic, radiochemical, and theoretical studies of the Ga3+-N-2-hydroxyethyl piperazine-N′-2-ethanesulfonic acid (HEPES buffer) system: Evidence for the formation of Ga3+- HEPES complexes in 68Ga labeling reactions. Contrast Media Mol Imaging. 2013;8(3):265–73. https://doi.org/10.1002/cmmi.1517
59. Breeman WA, De Jong M, Visser TJ, Erion JL, Krenning EP. Optimising conditions for radiolabelling of DOTA-peptides with 90Y, 111In and 177Lu at high specific activities. Eur J Nucl Med Mol Imaging. 2003;30(6):917–20. https://doi.org/10.1007/s00259-003-1142-0
60. Jussing E, Milton S, Samén E, Moein MM, Bylund L, Axelsson R, et al. Clinically applicable cyclotron-produced Gallium-68 gives high-yield radiolabeling of DOTA-based tracers. Biomolecules. 2021;11(8):1118. https://doi.org/10.3390/biom11081118
Supplementary files
Review
For citations:
Kodina G.E., Malysheva A.O., Larenkov A.A., Bruskin A.B. Possible Impurities in Radiopharmaceuticals and Corresponding Test Methods. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2022;12(3):244-262. (In Russ.) https://doi.org/10.30895/1991-2919-2022-12-3-244-262