Preview

Regulatory Research and Medicine Evaluation

Advanced search

NMR as Used in the Russian and Foreign Pharmacopoeias for Quality Control of Medicinal Products

https://doi.org/10.30895/1991-2919-2022-12-1-8-23

Abstract

The ongoing development of the Pharmacopoeia of the Eurasian Economic Union and the current trend for harmonisation of the Russian Pharmacopoeia with the world leading pharmacopoeias suggest the necessity of studying how different pharmacopoeias use nuclear magnetic resonance (NMR) for quality control of medicinal products. The aim of the study was to compare the extent of medicine quality characteristics assessed by NMR in the Russian and foreign pharmacopoeias. The review summarises the experience of various national and world pharmacopoeias in using the NMR method for quality control of medicines and certification of pharmacopoeial reference materials. The comparative analysis covered the following quality parameters: active ingredient identification, determination of the composition of non-stoichiometric compounds, determination of the average polymer chain length in polymers and block copolymers, determination of the absolute content of the active ingredient, identification and quantification of impurities, polymorphism, and crystallinity. It was shown that the United States and Japanese Pharmacopoeias are leading the way in introducing the NMR method into pharmacopoeial analysis. There have been some positive trends in the introduction of the NMR method in the State Pharmacopoeia of the Russian Federation as well. It was concluded that changes are needed in the general chapters “Nuclear Magnetic Resonance Spectroscopy” and “Reference Standards” of the State Pharmacopoeia of the Russian Federation, 14th ed. in order to harmonise the texts with those of the Eurasian Pharmacopoeia and the European Pharmacopoeia and to allow for the possibility of direct identification of a substance by complex analysis of NMR spectral data, without comparing the test sample and the reference standard spectra. The NMR method should be included in the list of absolute methods used for determination of purity of primary chemical reference substances during certification.

About the Authors

S. V. Moiseev
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Sergey V. Moiseev, Cand. Sci. (Chem.), Associate Professor

8/2 Petrovsky Blvd, Moscow 127051



N. E. Kuz’mina
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Natalia E. Kuz’mina, Dr. Sci. (Chem.).

8/2 Petrovsky Blvd, Moscow 127051



A. I. Luttseva
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Anna I. Luttseva, Cand. Sci. (Pharm.)

8/2 Petrovsky Blvd, Moscow 127051



References

1. Shu C-H, Wen BJ, Lin KJ. Monitoring the polysaccharide quality of Agaricus blazei in submerged culture by examining molecular weight distribution and TNF-alpha release capability of macrophage cell line RAW 264.7. Biotechnol Lett. 2004;26(4):2061–4.

2. Olafsdottir ES, Omarsdottir S, Paulsen BS, Wagner H. Immunologically active O6-branched (1→3)-β-glucan from the lichen Thamnolia vermicularis var. subuliformis. Phytomedicine. 2003;10(4):318–24. https://doi.org/10.1078/094471103322004811

3. Cozzolino R, Malvagna P, Spina E, Giori A, Fuzzati N, Anelli A, et al. Structural analysis of the polysaccharides from Echinacea angustifolia radix. Carbohydr Polym. 2006;65(3):263–72. https://doi.org/10.1016/j.carbpol.2006.01.012

4. Cheng HN, Neiss TG. Solution NMR spectroscopy of food polysaccharides. Polym Rev. 2012;52(2):81–114. https://doi.org/10.1080/15583724.2012.668154

5. Westphal M, James MFM, Kozek-Langenecker S, Stocker R, Guidet B, Van Aken H. Hydroxyethyl starches: different products — different effects. Anesthesiology. 2009;111(1):187–202. https://doi.org/10.1097/ALN.0b013e3181a7ec82

6. Yuruk K, Almac E, Ince C. Hydroxyethyl starch solutions and their effect on the microcirculation and tissue oxygenation. Transfus Altern Transfus Med. 2007;3(9):164–72. https://doi.org/10.1111/j.1778-428X.2007.00076.x

7. Lane DA, Lindahl U, eds. Heparin: chemical and biological properties. In: Clinical applications. Boca Raton, Florida: CRC Press; 1989.

8. Guerrini M, Becatti D, Shriver Z, Naggi A, Viswanathan K, Bisio A, et al. Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat Biotechnol. 2008;26(6):669–75. https://doi.org/10.1038/nbt1407

9. Kishimoto TK, Viswanathan K, Ganguly T, Elankumaran S, Smith S, Pelzer K, et al. Contaminated heparin associated with adverse clinical events and activation of the contact system. N Engl J Med. 2008;358(23):2457– 67. https://doi.org/10.1056/nejmoa0803200

10. Censi R, Di Martino P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules. 2015;20(10):18759–76. https://doi.org/10.3390/molecules201018759

11. Singhal D, Curatolo W. Drug polymorphism and dosage form design: a practical perspective. Adv Drug Deliv Rev. 2004;56(3):335–47. https://doi.org/10.1016/j.addr.2003.10.008

12. Zhou Y, Wang J, Xiao Y, Wang T, Huang X. The effects of polymorphism on physicochemical properties and pharmacodynamics of solid drugs. Curr Pharm Des. 2018;24(21):2375–82. https://doi.org/10.2174/1381612824666180515155425

13. Smirnova IG, Gildeeva GN, Chistyakov VV. Analysis of crystalline structure and chirality of drug substances. Vestnik Moskovskogo universiteta. Seriya 2: Khimiya = Moscow University Chemistry Bulletin. 2012;53(4):234–40 (In Russ.)

14. Brittain HG, ed. Polymorphism in pharmaceutical solids. New York: Marcel Dekker; 1999.

15. Desiraju GR. Supramolecular synthons in crystal engineering — a new organic synthesis. Angew Chem Int Ed Engl. 1995;34(21):2311–27. https://doi.org/10.1002/anie.199523111

16. Reddy DS, Ovchinnikov YE, Shishkin OV, Struchkov YT, Desiraju GR. Supramolecular synthons in crystal engineering. 3. Solid state architecture and synthon robustness in some 2,3-dicyano-5,6-dichloro-1,4-dialkoxybenzenes. J Am Chem Soc. 1996;118(17):4085–9. https://doi.org/10.1021/ja953372u

17. Serezhkin VN, Serezhkina LB. New criterion for conformational polymorphism. Crystallogr Rep. 2012;57(1):33– 42. https://doi.org/10.1134/S1063774511030291

18. Kuz’mina NE, Moiseev SV, Yashkir VA, Osintseva EV. The possibility of the nuclear magnetic resonance methods using for reference standards certification. Standartnye obraztsy = Reference Materials. 2014;(2):19–25 (In Russ.)

19. Kuz’mina NE, Moiseev SV, Krylov VI, Yashkir VA, Merkulov VA. Validation of a method for measuring the molar substitution of hydroxyethylstarches by 1 H NMR Spectroscopy. Pharmaceutical Chemistry Journal. 2016;50(4):265–9] https://doi.org/10.1007/s11094-016-1435-9

20. Kuz’mina NE, Moiseev SV, Krylov VI, Kutin AA, Zhukov EA, Yashkir VA, Merkulov VA. Validation of the procedure for determination of amino acids composition of glatiramer acetate by C-13 NMR spectroscopy. Vedomosti Nauchnogo tsentra ekspertizy sredstv meditsinskogo primeneniya = Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2017;7(3):175–81 (In Russ.)

21. Moiseev SV, Kuz’mina NE, Krylov VI, Yashkir VA, Merkulov VA. Validation of a method of measuring mean molecular weight of dextrans by diffusion-ordered spectroscopy. Pharmaceutical Chemistry Journal. 2017;51(9):829–32 https://doi.org/10.1007/s11094-017-1701-5

22. Kuz’mina NE, Moiseev SV, Krylov VI, Deryabin AS, Yashkir VA, Merkulov VA. Validation of an NMR-spectroscopic method for authenticity confirmation of buserelin acetate pharmaceutical substance. Pharmaceutical Chemistry Journal. 2018;52(2):159–65 https://doi.org/10.1007/s11094-018-1783-8

23. Moiseev SV, Kuz’mina NE, Krylov VI, Yashkir VA, Merkulov VA. Validation of a method for assay of trifluoroacetates in the pharmaceutical substance glatiramer acetate by 19 F NMR spectroscopy. Pharmaceutical Chemistry Journal. 2018;52(7):658–62 https://doi.org/10.1007/s11094-018-1877-3

24. Moiseev SV, Kuz’mina NE, Luttseva AI. Development of identification test methods for triptorelin acetate and goserelin acetate substances using NMR spectroscopy. Vedomosti Nauchnogo tsentra ekspertizy sredstv meditsinskogo primeneniya = Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2019;9(1):54–63 (In Russ.)] https://doi.org/10.30895/1991-2919-2019-9-1-54-63

25. Kuz’mina NE, Moiseev SV, Khorolskiy MD, Lutceva AI. Development and validation of 2-azaspiro [4,5] decan-3-one (impurity A) in gabapentin determination method using qNMR spectroscopy. Molecules. 2021;26(6):1656. https://doi.org/10.3390/molecules26061656


Supplementary files

Review

For citations:


Moiseev S.V., Kuz’mina N.E., Luttseva A.I. NMR as Used in the Russian and Foreign Pharmacopoeias for Quality Control of Medicinal Products. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2022;12(1):8-23. (In Russ.) https://doi.org/10.30895/1991-2919-2022-12-1-8-23

Views: 975


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-3062 (Print)
ISSN 3034-3453 (Online)