Features of toxic nephropathy development during antibiotic therapy
https://doi.org/10.30895/1991-2919-2022-392
Abstract
Scientist relevance. Antibacterials can have nephrotoxic effects because medicinal products of this class are primarily excreted by the kidneys.
Aim. The study aimed to analyse literature data on the mechanisms, risk factors and specific features of toxic nephropathy development during antibiotic therapy.
Discussion. The article considers mechanisms of development of acute interstitial nephritis, acute tubular necrosis, crystal deposits in the tubules, proximal or distal tubulopathy with electrolyte abnormalities during the use of antibiotics. Nephrotoxicity was shown to be most often associated with the use of aminoglycosides, beta-lactams, and vancomycin. The authors analysed the dependence of nephrotoxicity on antibacterial agent lipophilicity and drug–drug interactions. The main risk factors for developing nephropathy are older age; male sex; black race; hypovolaemia; arterial hypotension; angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, non-steroidal anti-inflammatory drugs or their combinations; and individual genetic characteristics. Nephrotoxicity is associated with genetic characteristics of the systems responsible for metabolism and excretion of antibacterial products: cytochrome P450 isoenzymes, P-glycoprotein, multidrug resistance protein (MRP), multidrug and toxin extrusion (MATE), breast cancer resistance protein (BCRP), and organic anion transporters. Severe generalised infections change pharmacokinetic parameters of antibacterial products. This should be taken into account when prescribing the hydrophilic antibiotics that are excreted by tubular secretion and reabsorbed in the renal tubules.
Conclusions. The study demonstrated the effectiveness of the method comprising a combination of dose adjustment based on therapeutic drug monitoring results and renal function monitoring for improving the safety of antibiotic therapy.
Keywords
About the Authors
R. E. KazakovRussian Federation
Ruslan E. Kazakov, Cand. Sci. (Biol.)
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
G. I. Gorodetskaya
Russian Federation
Galina I. Gorodetskaya
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
8/2 Trubetskaya St., Moscow 119991, Russian Federation
R. V. Archvadze
Russian Federation
Regina V. Archvadze
11 Yauzskaya St., Moscow 109240, Russian Federation
A. V. Zavtonev
Russian Federation
Alexander V. Zavtonev
11 Yauzskaya St., Moscow 109240, Russian Federation
A. V. Danilov
Russian Federation
Alexander V. Danilov
11 Yauzskaya St., Moscow 109240, Russian Federation
D. L. Fetlam
Russian Federation
Dmitry L. Fetlam
11 Yauzskaya St., Moscow 109240, Russian Federation
D. A. Ishalev
Russian Federation
Dmitry A. Ishalev
11 Yauzskaya St., Moscow 109240, Russian Federation
N. G. Berdnikova
Russian Federation
Nadezhda G. Berdnikova, Cand. Sci. (Med.)
8/2 Trubetskaya St., Moscow 119991, Russian Federation
11 Yauzskaya St., Moscow 109240, Russian Federation
E. Yu. Demchenkova
Russian Federation
Elena Yu. Demchenkova, Cand. Sci. (Pharm.)
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
References
1. Rolland AL, Garnier AS, Meunier K, Drablier G, Briet M. Drug-induced acute kidney injury: a study from the French medical administrative and the French national pharmacovigilance databases using capture-recapture method. J Clin Med. 2021;10(2):168. https://doi.org/10.3390/jcm10020168
2. Xu X, Nie S, Liu Z, Chen C, Xu G, Zha Y, et al. Epidemiology and clinical correlates of AKI in Chinese hospitalized adults. Clin J Am Soc Nephrol. 2015;10(9):1510–8. https://doi.org/10.2215/CJN.02140215
3. Wang Y, Cui Z, Fan M. Hospital-acquired and community-acquired acute renal failure in hospitalized Chinese: a tenyear review. Ren Fail. 2007;29(2):163–8. https://doi.org/10.1080/08860220601095918
4. Liu C, Yan S, Wang Y, Wang J, Fu X, Song H, et al. Drug-induced hospital-acquired acute kidney injury in China: a multicenter cross-sectional survey. Kidney Dis. 2021;7(2):143–55. https://doi.org/10.1159/000510455
5. Rybitsky Z. Antibiotic therapy and the challenges of nosocomial infections. Lublin: Makmed; 2014 (In Russ.)
6. Еvteev VA, Prokofyev AB, Bunyatyan ND, Kukes VG. MATE transporters: involvement in drug pharmacokinetics and drug-drug interactions. Farmatsiya = Pharmacy. 2019;68(7):44–7 (In Russ.) https://doi.org/10.29296/25419218-2019-07-08
7. Moss DM, Neary M, Owen A. The role of drug transporters in the kidney: lessons from tenofovir. Front Pharmacol. 2014;5:248. https://doi.org/10.3389/fphar.2014.00248
8. Launay-Vacher V, Izzedine H, Karie S, Hulot JS, Baumelou A, Deray G. Renal tubular drug transporters. Nephron Physiol. 2006;103(3):97–106.
9. Moledina DG, Perazella MA. Drug-induced acute interstitial nephritis. Clin J Am Soc Nephrol. 2017;12(12):2046–9. https://doi.org/10.2215/CJN.07630717
10. Ostroumova OD, Klepikova MV, Litvinova CN. Drug-induced acute interstitial nephritis. Sibirskoye meditsinskoye obozreniye = Siberian Medical Review. 2021;4:34–50 (In Russ.) https://doi.org/10.20333/25000136-2021-4-34-50
11. Zakharova EV, Ostroumova OD, Klepikova MV. Drug-induced acute kidney injury. Bezopasnost’ i risk farmakoterapii = Safety and Risk of Pharmacotherapy 2021;9(3):117–27 (In Russ.) https://doi.org/10.30895/2312-7821-2021-9-3-117-127
12. Perazella MA. Drug-induced nephropathy: an update. Expert Opin Drug Saf. 2005;4(4):689–706. https://doi.org/10.1517/14740338.4.4.689
13. Perazella MA. Renal vulnerability to drug toxicity. Clin J Am Soc Nephrol. 2009;4(7):1275–83. https://doi.org/10.2215/CJN.02050309
14. Morales-Alvarez MC. Nephrotoxicity of antimicrobials and antibiotics. Adv Chronic Kidney Dis. 2020;27(1): 31–7. https://doi.org/10.1053/j.ackd.2019.08.001
15. Namrata K, Perazella MA. Drug-induced acute interstitial nephritis: pathology, pathogenesis, and treatment. Iran J Kidney Dis. 2015;9(1):3–13. PMID: 25599729
16. Pais GM, Liu J, Zepcan S, Avedissian SN, Rhodes NJ, Downes KJ, et al. Vancomycin-induced kidney injury: animal models of toxicodynamics, mechanisms of injury, human translation, and potential strategies for prevention. Pharmacotherapy. 2020;40(5):438–54. https://doi.org/10.1002/phar.2388
17. McWilliam SJ, Antoine DJ, Smyth RL, Pirmohamed M. Aminoglycoside-induced nephrotoxicity in children. Pediatr Nephrol. 2017;32(11):2015–25. https://doi.org/10.1007/s00467-016-3533-z
18. Lopez–Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandezl FJ. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int. 2011;79(1):33–45. https://doi.org/10.1038/ki.2010.337
19. Silverblatt F. Pathogenesis of nephrotoxicity of cephalosporins and aminoglycosides: a review of current concepts. Clin Infect Dis. 1982;4:360–5. https://doi.org/10.1093/clinids/4.supplement_2.s360
20. Smirnov AV, Shilov EM, Dobronravov VA, Kayukov IN, Bobkova MYu, Shvetsov AN, et al. National guidelines. Chronic kidney disease: basic principles of screening, diagnosis, prevention and treatment approaches. Nefrologiya = Nephrology (Saint-Petersburg). 2012;16(1):89–115 (In Russ.)
21. Perazella MA. Pharmacology behind common drug nephrotoxicities. Clin J Am Soc Nephrol. 2018;13(12): 1897–908. https://doi.org/10.2215/CJN.00150118
22. Stratta P, Lazzarich E, Canavese C, Bozzola C, Monga G. Ciprofloxacin crystal nephropathy. Am J Kidney Dis. 2007;50(2):330–5. https://doi.org/10.1053/j.ajkd.2007.05.014
23. Nickolas TL, Schmidt-Ott KM, Canetta P, Forster C, Singer E, Sise M et al. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicencer prospective cohort study. J Am Coll Cardiol. 2012;59(3):246–55. https://doi.org/10.1016/j.jacc.2011.10.854
24. Wargo KA, Edwards JD. Aminoglycoside-induced nephrotoxicity. J Pharm Pract. 2014;27(6):573–7. https://doi.org/10.1177/0897190014546836
25. Teng C, Baus C, Wilson JP, Frei CR. Rhabdomyolysis associations with antibiotics: a pharmacovigilance study of the FDA Adverse Event Reporting System (FAERS). Int J Med Sci. 2019;16(11):1504–9. https://doi.org/10.7150/ijms.38605
26. Sokova EA, Arkhipov VV, Mazerkina IA, Muslimova OV. Some aspects of drug induced nephrotoxicity assessment. Bezopasnost’ i risk farmakoterapii = Safety and Risk of Pharmacotherapy. 2020;8(3):123–33 (In Russ.) https://doi.org/10.30895/2312-7821-2020-8-3-123-133
27. Matsubara A, Oda S, Akai S, Tsuneyama K, Yokoi T. Establishment of a drug-induced rhabdomyolysis mouse model by co-administration of ciprofloxacin and atorvastatin. Toxicol Lett. 2018;291:184–93. https://doi.org/10.1016/j.toxlet.2018.04.016
28. Sales GTM, Foresto RD. Drug-induced nephrotoxicity. Rev Assoc Med Bras (1992). 2020;66 Suppl:s82–s90. https://doi.org/10.1590/1806-9282.66.S1.82
29. Jerkic M, Vojvodic S, Lopez-Novoa JM. The mechanism of increased renal susceptibility to toxic substances in the elderly. Part I. The role of increased vasoconstriction. Int Urol Nephrol. 2001;32(4):539–47. https://doi.org/10.1023/a:1014484101427
30. Osipenko MF, Voloshinа NB, Shayde NL. Renal failure with cirrhosis of the liver. Effektivnaya farmakoterapiya = Effective Pharmacotherapy. 2020;16(1):58–61 (In Russ.) https://doi.org/10.33978/2307-3586-2020-16-1-58-61
31. Evenepoel P. Acute toxic renal failure. Best Pract Res Clin Anaesthesiol. 2004;18(1):37–52. https://doi.org/10.1016/j.bpa.2003.09.007
32. Aleksa K, Matsell D, Krausz K, Gelboin H, Ito S, Koren G. Cytochrome P450 3A and 2B6 in the developing kidney: implications for ifosfamide nephrotoxicity. Pediatr Nephrol. 2005;20(7):872–85. https://doi.org/10.1007/s00467-004-1807-3
33. Bushma KM, Spas VV, Shapel’ IA, Gerasimchik PA, Grigoruk AV. On aminoglycoside nephrotoxicity. Novosti khirurgii = Surgery News. 2009;1(17):157–62 (In Russ.)
34. Xu EY, Perlina A, Vu H, Troth SP, Brennan RJ, Aslamkhan AG, Xu Q. Integrated pathway analysis of rat urine metabolic profiles and kidney transcriptomic profiles to elucidate the systems toxicology of model nephrotoxicants. Chem Res Toxicol. 2008;21(8):1548–61. https://doi.org/10.1021/tx800061w
35. Kwiatkowska E, Domański L, Dziedziejko V, Kajdy A, Stefańska K, Kwiatkowski S. The mechanism of drug nephrotoxicity and the methods for preventing kidney damage. Int J Mol Sci. 2021;22(11):6109. https://doi.org/10.3390/ijms22116109
36. Macy E. Penicillin and beta-lactam allergy: epidemiology and diagnosis. Curr Allergy Asthma Rep. 2014;14(11):476. https://doi.org/10.1007/s11882-014-0476-y
37. Murphy JE, Gillespie DE, Bateman CV. Predictability of vancomycin trough concentrations using seven approaches for estimating pharmacokinetic parameters. Am J Health Syst Pharm. 2006;63(23):2365–70. https://doi.org/10.2146/ajhp060047
38. Van Driest SL, McGregor TL, Velez Edwards DR, Saville BR, Kitchner TE, Hebbring SJ, et al. Genome-wide association study of serum creatinine levels during vancomycin therapy. PLoS One. 2015;10(6):e0127791. https://doi.org/10.1371/journal.pone.0127791
39. Olsen KM, Rudis MI, Rebuck JA, Hara J, Gelmont D, Mehdian R, et al. Effect of once-daily dosing vs. multiple daily dosing of tobramycin on enzyme markers of nephrotoxicity. Crit Care Med. 2004;32(8):1678–82. https://doi.org/10.1097/01.ccm.0000134832.11144.cb
40. Paterson D L, Robson JM, Wagener M M. Risk f actors f or toxicity in elderly patients given aminoglycosides once daily. J Gen Intern Med. 1998;13(11):735–9. https://doi.org/10.1046/j.1525-1497.1998.00224.x
41. Streetman DS, Nafziger AN, Destache C J, Bertino AS. Individualized pharmacokinetic monitoring results in less aminoglycoside-associated nephrotoxicity and fewer associated costs. Pharmacotherapy. 2001;21(4):443–51. https://doi.org/10.1592/phco.21.5.443.34490
Supplementary files
Review
For citations:
Kazakov R.E., Gorodetskaya G.I., Archvadze R.V., Zavtonev A.V., Danilov A.V., Fetlam D.L., Ishalev D.A., Berdnikova N.G., Demchenkova E.Yu. Features of toxic nephropathy development during antibiotic therapy. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2023;13(4):531-539. (In Russ.) https://doi.org/10.30895/1991-2919-2022-392