Preview

Ведомости Научного центра экспертизы средств медицинского применения. Регуляторные исследования и экспертиза лекарственных средств

Расширенный поиск

Высокотехнологические лекарственные препараты на основе онколитических вирусов (часть 1: разработка и регистрация в КНР)

https://doi.org/10.30895/1991-2919-2021-11-148-159

Полный текст:

Аннотация

Одним из перспективных направлений при поиске инновационных препаратов для лечения онкологических заболеваний является применение онколитических (природных или генетически модифицированных) вирусов (ОЛВ) для избирательного действия на опухолевые клетки и их уничтожения, особенно в составе комбинированной терапии. В настоящее время официально разрешены к медицинскому применению три препарата на основе ОЛВ: два в Китайской Народной Республике (КНР) и один в США и Европейском союзе. Цель работы – анализ материалов, касающихся особенностей разработки препаратов на основе онколитических вирусов, проведения доклинических и клинических исследований, а также их регистрации в КНР. Был проведен анализ данных, представленных в свободном доступе на сайтах производителей препаратов, в публичных докладах и нормативной документации регуляторных органов КНР, в международных реестрах клинических исследований и научных публикациях. Препараты Gendicine® (SiBiono GeneTech Co., LTD) и Oncorine® (Shanghai Sunway Biotech Co., LTD) разрабатывались и были разрешены в КНР для использования в клинической практике в составе комбинированной терапии. Отмечена значительная продолжительность разработки препаратов (до момента начала регистрационных процедур препарат Gendicine® изучался в течение 14 лет), сложность дизайна доклинических исследований и возможность применения препаратов для нескольких нозологий с различной локализацией опухолей. Выявленные особенности разработки и регистрации в КНР препаратов на основе онколитических вирусов могут быть использованы в регуляторной практике Российской Федерации.

Об авторах

Е. В. Мельникова
Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации
Россия

Мельникова Екатерина Валерьевна, кандидат биологических наук,

Петровский б-р, д. 8, стр. 2, Москва, 127051



О. А. Рачинская
Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации
Россия

Рачинская Ольга Анатольевна, кандидат биологических наук,

Петровский б-р, д. 8, стр. 2, Москва, 127051



В. А. Меркулов
Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации
Россия

Меркулов Вадим Анатольевич, доктор медицинских наук, профессор,

Петровский б-р, д. 8, стр. 2, Москва, 127051



Список литературы

1. Arab A, Behravan N, Razazn A, Barati N, Mosaffa F, Nicastro J, et al. The viral approach to breast cancer immunotherapy. J Cell Physiol. 2019;234(2):1257–67. https://doi.org/10.1002/jcp.27150

2. Packiriswamy N, Upreti D, Zhou Y, Khan R, Miller A, Diaz RM, et al. Oncolytic measles virus therapy enhances tumor antigen-specific T-cell responses in patients with multiple myeloma. Leukemia. 2020;34(12):3310–22. https://doi.org/10.1038/s41375-020-0828-7

3. Yang X, Huang B, Deng L, Hu Z. Progress in gene therapy using oncolytic vaccinia virus as vectors. J Cancer Res Clin Oncol. 2018;144(12): 2433–40. https://doi.org/10.1007/s00432-018-2762-x

4. Wei D, Xu J, Liu X-Y, Chen Z-N, Bian H. Fighting cancer with viruses: oncolytic virus therapy in China. Hum Gene Ther. 2018;29(2):151–9. https://doi.org/10.1089/hum.2017.212

5. Taguchi S, Fukuhara H, Todo T. Oncolytic virus therapy in Japan: progress in clinical trials and future perspectives. Jpn J Clin Oncol. 2019;49(3):201–9. https://doi.org/10.1093/jjco/hyy170

6. Fu L-Q, Wang S-B, Cai M-H, Wang X-J, Chen J-Y, Tong X-M, et al. Recent advances in oncolytic virus-based cancer therapy. Virus Res. 2019;270:197675. https://doi.org/10.1016/j.virusres.2019.197675

7. Haines BB, Denslow A, Grzesik P, Lee JS, Farkaly T, Hewett J, et al. ONCR-177, an oncolytic HSV-1 designed to potently activate systemic antitumor immunity. Cancer Immunol Res. 2021;9(3):291–308. https://doi.org/10.1158/2326-6066.cir-20-0609

8. Lan Q, Xia S, Wang Q, Xu W, Huang H, Jiang S, Lu L. Development of oncolytic virotherapy: from genetic modification to combination therapy. Front Med. 2020;14(2):160–184. https://doi.org/10.1007/s11684-020-0750-4

9. Chiocca EA, Rabkin SD. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol Res. 2014;2(4):295–300. https://doi.org/10.1158/2326-6066.cir-14-0015

10. Wang P, Li X, Wang J, Gao D, Li Y, Li H, et al. Re-designing Interleukin-12 to enhance its safety and potential as an anti-tumor immunotherapeutic agent. Nat Commun. 2017;8(1):1395. https://doi.org/10.1038/s41467-017-01385-8

11. Samson A, Scott KJ, Taggart D, West EJ, Wilson E, Nuovo GJ, et al. Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Sci Transl Med. 2018;10(422):eaam7577. https://doi.org/10.1126/scitranslmed.aam7577

12. Geletneky K, Hajda J, Angelova AL, Leuchs B, Capper D, Bartsch AJ, et al. Oncolytic H-1 parvovirus shows safety and signs of immunogenic activity in a first phase I/IIa glioblastoma trial. Mol Ther. 2017;25(12):2620–34. https://doi.org/10.1016/j.ymthe.2017.08.016

13. Bourgeois-Daigneault MC, Roy DG, Aitken AS, El Sayes N, Martin NT, Varette O, et al. Neoadjuvant oncolytic virotherapy before surgery sensitizes triple-negative breast cancer to immune checkpoint therapy. Sci Transl Med. 2018;10(422):eaao1641. https://doi.org/10.1126/scitranslmed.aao1641

14. Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol. 2018;18(8):498–513. https://doi.org/10.1038/s41577-018-0014-6

15. Foreman PM, Friedman GK, Cassady KA, Markert JM. Oncolytic virotherapy for the treatment of malignant glioma. Neurotherapeutics. 2017;14(2):333–44. https://doi.org/10.1007/s13311-017-0516-0

16. Alessandrini F, Menotti L, Avitabile E, Appolloni I, Ceresa D, Marubbi D, et al. Eradication of glioblastoma by immuno-virotherapy with a retargeted oncolytic HSV in a preclinical model. Oncogene. 2019;38(23):4467–79. https://doi.org/10.1038/s41388-019-0737-2

17. Li JM, Kao KC, Li LF, Yang TM, Wu CP, Horng YM, et al. MicroRNA-145 regulates oncolytic herpes simplex virus-1 for selective killing of human non-small cell lung cancer cells. Virol J. 2013;10(1):241. https://doi.org/10.1186/1743-422x-10-241

18. Eriksson E, Milenova I, Wenthe J, Stahle M, Leja-Jarblad J, Ullenhag G, et al. Shaping the tumor stroma and sparking immune activation by CD40 and 4–1BB signaling induced by an armed oncolytic virus. Clin Cancer Res. 2017;23(19):5846–57. https://doi.org/10.1158/1078-0432.ccr-17-0285

19. Pearl TM, Markert JM, Cassady KA, Ghonime MG. Oncolytic virus-based cytokine expression to improve immune activity in brain and solid tumors. Mol Ther Oncolytics. 2019;13:14–21. https://doi.org/10.1016/j.omto.2019.03.001

20. Foloppe J, Kempf J, Futin N, Kintz J, Cordier P, Pichon C, et al. The enhanced tumor specificity of TG6002, an armed oncolytic vaccinia virus deleted in two genes involved in nucleotide metabolism. Mol Ther Oncolytics. 2019;14:1–14. https://doi.org/10.1016/j.omto.2019.03.005

21. Grigg C, Blake Z, Gartrell R, Sacher A, Taback B, Saenger Y. Talimogene laherparepvec (T-Vec) for the treatment of melanoma and other cancers. Semin Oncol. 2016;43(6):638–46. https://doi.org/10.1053/j.seminoncol.2016.10.005

22. Hamid O, Hoffner B, Gasal E, Hong J, Carvajal RD. Oncolytic immunotherapy: unlocking the potential of viruses to help target cancer. Cancer Immunol Immunother. 2017;66(10):1249–64. https://doi.org/10.1007/s00262-017-2025-8

23. Robinson S, Galanis E. Potential and clinical translation of oncolytic measles viruses. Expert Opin Biol Ther. 2017;17(3):353–63. https://doi.org/10.1080/14712598.2017.1288713

24. Doniņa S, Strēle I, Proboka G, Auziņš J, Alberts P, Jonsson B, et al. Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study. Melanoma Res. 2015;25(5):421–26. https://doi.org/10.1097/cmr.0000000000000180

25. Peng Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther. 2005;16(9):1016–27. https://doi.org/10.1089/hum.2005.16.1016

26. Husain SR, Han J, Au P, Shannon K, Puri RK. Gene therapy for cancer: regulatory considerations for approval. Cancer Gene Ther. 2015;22(12):554–63. https://doi.org/10.1038/cgt.2015.58

27. Zhang WW, Li L, Li D, Liu J, Li X, Li W, et al. The first approved gene therapy product for cancer Ad-p53 (gendicine): 12 years in the clinic. Human Gene Ther. 2018;29(2):160–79. https://doi.org/10.1089/hum.2017.218

28. Zhang SW, Xiao SW, Liu CQ, Sun Y, Su X, Li DM, et al. Treatment of head and neck squamous cell carcinoma by recombinant adenovirus-p53 combined with radiotherapy: a phase II clinical trial of 42 cases. Zhonghua Yi Xue Za Zhi. 2003;83(23):2023–8. PMID: 14703408

29. Chen CB, Pan JJ, Xu LY. Recombinant adenovirus p53 agent injection combined with radiotherapy in treatment of nasopharyngeal carcinoma: a phase II clinical trial. Zhonghua Yi Xue Za Zhi. 2003;83(23):2033–5. PMID: 14703410

30. Han DM, Huang ZG, Zhang W, Yu ZK, Wang Q, Ni X, et al. Effectiveness of recombinant adenovirus p53 injection on laryngeal cancer: phase I clinical trial and follow up. Zhonghua Yi Xue Za Zhi. 2003;83(23):2029-32. PMID: 14703409

31. Liu J, Lv D, Wang H, Zou J, Chen F, Yang H. Recombinant adenovirus-p53 enhances the therapeutic effect of surgery and chemoradiotherapy combination in hypopharyngeal squamous cell carcinomas patients. Medicine (Baltimore). 2018;97(35):e12193. https://doi.org/10.1097/md.0000000000012193

32. Li Y, Li L-J, Wang L-J, Zhang Z, Gao N, Liang C-Y, et al. Selective intra-arterial infusion of rAd-p53 with chemotherapy for advanced oral cancer: a randomized clinical trial. BMC Med. 2014;12:16. https://doi.org/10.1186/1741-7015-12-16

33. Geng J, Xiao S, Zhang S, Liu Ch, Li Y, Fang JJ, et al. Clinical effectiveness of recombinant adenovirus-p53 combined with radiotherapy in advanced soft tissue sarcoma: A report of 37 cases. J Clin Oncol. 2014;32(15):e21514. https://dx.doi.org/10.1200/jco.2014.32.15_suppl.e21514

34. Xiao SW, Xu Y-Z, Xiao B-F, Jiang J, Liu C-Q, Fang Z-W, et al. Recombinant adenovirus-p53 gene therapy for advanced unresectable soft-tissue sarcomas. Hum Gene Ther. 2018;29(6):699–707. https://doi.org/10.1089/hum.2017.103

35. Su X, Chen W-J, Xiao S-W, Li X-F, Xu G, Pan J-J, Zhang S-W. Effect and safety of recombinant adenovirus-p53 transfer combined with radiotherapy on long-term survival of locally advanced cervical cancer. Hum Gene Ther. 2016;27(12):1008–14. https://doi.org/10.1089/hum.2016.043

36. Qu H, Xia Y, Li X. Recombinant human p53 adenovirus injection (rAd-p53) combined with chemotherapy for 4 cases of high-grade serous ovarian cancer. Curr Gene Ther. 2020;20(4):313–20. https://doi.org/10.2174/1566523220666200826100245

37. Shen A, Liu S, Yu W, Deng H, Li Q. P53 gene therapy-based transarterial chemoembolization for unresectable hepatocellular carcinoma: a prospective cohort study. J Gastroenterol Hepatol. 2015;30(11):1651–6. https://doi.org/10.1111/jgh.13009

38. Liu Y, Zhang Y, Bautista D, Tang S, Zhou J, Li C, Zhao G. Trans-arterial p53-gene-embolization with gelatin sponge microparticles for hepatocellular carcinoma with BCLC stage B: single-center experience. Cell Biochem Biophys. 2015;71(1):99–104. https://doi.org/10.1007/s12013-014-0167-2

39. Zhou J, Zhang Y, Zhao G, Liu Y, Li C, Tang S, et al. The preliminary study of recombinant adenovirus p53 combined with transarterial embolization with particles for advanced hepatocellular carcinoma. Zhonghua Yi Xue Za Zhi. 2014;94(9):660–3. PMID: 24842203

40. Yang J, Wang X, Zheng G. A primary report of recombinant adeno-viral human p53 gene (rad-p53) in combination with concurrent radio-chemothrepy in patients with t4n0-2m0 stage non-small cell lung cancer in elderly. Chinese Journal of Coal Industry Medicine. 2013;(10):1586–9.

41. Garber K. China approves world's first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst. 2006;98(5):298–300. https://doi.org/10.1093/jnci/djj111

42. Lichtenstein DL, Toth K, Doronin K, Tollefson AE, Wold WSM. Functions and mechanisms of action of the adenovirus E3 proteins. Int Rev Immunol. 2004;23(1–2):75–111. https://doi.org/10.1080/08830180490265556

43. Liang M. Oncorine, the world first oncolytic virus medicine and its update in China. Curr Cancer Drug Targets. 2018;18(2):171–76. https://doi.org/10.2174/1568009618666171129221503

44. Yuan Z-Y, Zhang L, Li S, Qian X-Z, Guan Z-Z. Safety of an E1B deleted adenovirus administered intratumorally to patients with cancer. Ai Zheng. 2003;22(3):310–3. PMID: 12654194

45. Lu W, Zheng S, Li X-F, Huang J-J, Zheng X, Li Z. Intra-tumor injection of H101, a recombinant adenovirus, in combination with chemotherapy in patients with advanced cancers: а pilot phase II clinical trial. World J Gastroenterol. 2004;10(20):3634–8. https://doi.org/10.3748/wjg.v10.i24.3634

46. Xia Z-J, Chang J-H, Zhang L, Jiang W-Q, Guan Z-Z, Liu J-W, et al. Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus. Ai Zheng. 2004;23(12):1666–70. PMID: 15601557

47. He C, Zhang Y, Lin X. Increased overall survival and decreased cancer-specific mortality in patients with hepatocellular carcinoma treated by transarterial chemoembolization and human adenovirus type-5 combination therapy: a competing risk analysis. J Gastrointest Surg. 2018;22(6):989–97. https://doi.org/10.1007/s11605-018-3703-3

48. He C-B, Lao X-M, Lin X-J. Transarterial chemoembolization combined with recombinant human adenovirus type 5 H101 prolongs overall survival of patients with intermediate to advanced hepatocellular carcinoma: a prognostic nomogram study. Chin J Cancer. 2017;36(1):59. https://doi.org/10.1186/s40880-017-0227-2

49. Xiao B, Jin Z-D, Li Z-S, Du Y-Q, Wu R-P, Zhou J. Intra-tumoral injection of E1B gene-deleted adenovirus combined with gemcitabine for unresectable pancreatic carcinoma: 19 cases analysis. Chinese Journal of Pancreatology. 2011;11(3). https://doi.org/10.3760/cma.j.issn.1674-1935.2011.03.004


Рецензия

Для цитирования:


Мельникова Е.В., Рачинская О.А., Меркулов В.А. Высокотехнологические лекарственные препараты на основе онколитических вирусов (часть 1: разработка и регистрация в КНР). Ведомости Научного центра экспертизы средств медицинского применения . 2021;11(3):148-159. https://doi.org/10.30895/1991-2919-2021-11-148-159

For citation:


Melnikova E.V., Rachinskaya O.A., Merkulov V.A. Advanced Therapy Medicines Based on Oncolytic Viruses (Part I: Development and Authorisation of Products in China). The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products . 2021;11(3):148-159. (In Russ.) https://doi.org/10.30895/1991-2919-2021-11-148-159

Просмотров: 343


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1991-2919 (Print)
ISSN 2619-1172 (Online)