Anti-Tumour Drugs: Planning Preclinical Efficacy and Safety Studies
https://doi.org/10.30895/1991-2919-2020-10-2-96-110
Abstract
The decoding of the DNA structure and development of new molecular methods of its analysis, as well as identification of specific genomic changes responsible for malignant transformation, have become the turning points in elaboration of novel anti-tumour drugs directed against molecular and genetic targets of tumor growth. Transition from empirical screening of agents inhibiting tumour cell proliferation to molecule-targeted analytical methods has raised a number of serious methodological issues regarding preclinical evaluation of novel medicines. The objective of this paper was to analyse general principles and features of preclinical efficacy and safety studies of different classes of modern anti-tumour drugs with a view to improve existing national guidelines. The paper reviews various aspects of preclinical studies of different classes of anti-tumour drugs (small molecule chemotherapy drugs, hormones and hormone antagonists, alkylating agents and antimetabolites, microbial and herbal medicines, as well as monoclonal antibodies). The article explores general principles of studying the drugs’ pharmacological activity in vitro, ex vivo, and in vivo, and evaluating their pharmacokinetic parameters. It describes various methods and models of research, summarises specific aspects of determination of genotoxicity, carcinogenicity, reproductive toxicity, mutagenicity, acute and chronic toxicity of various groups of medicines. It also lists criteria for selecting drug doses for toxicokinetic studies. The need for harmonisation of national requirements for conducting preclinical studies with the European standards entails alignment of terminology and further development of general algorithms for selecting doses and determining the necessary scope of research. The use of biomarkers in preclinical studies will make it possible to exclude inefficient compounds from further research.
About the Authors
O, A. BezborodovaRussian Federation
Olga A. Bezborodova - Dr. Sci. (Biol.).
3 2nd Botkinsky Drive, Moscow 125284
A. A. Pankratov
Russian Federation
Andrey A. Pankratov - Cand. Sci. (Biol.).
3 2nd Botkinsky Drive, Moscow 125284
E. R. Nemtsova
Russian Federation
Elena R. Nemtsova - Dr. Sci. (Biol.).
3 2nd Botkinsky Drive, Moscow 125284
Yu. B. Venediktova
Russian Federation
Yulia B. Venediktova
3 2nd Botkinsky Drive, Moscow 125284
M. S. Vorontsova
Russian Federation
Maria S. Vorontsova
3 2nd Botkinsky Drive, Moscow 125284
G. N. Engalycheva
Russian Federation
Galina N. Engalycheva, Cand. Sci. (Biol.).
8/2 Petrovsky Blvd, Moscow 127051
R. D. Syubaev
Russian Federation
Rashid D. Syubaev - Dr. Sci. (Med.).
8/2 Petrovsky Blvd, Moscow 127051
References
1. Berezovskaya IV. Classification of substances with respect to acute toxicity for parenteral administration. Pharmaceutical Chemistry Journal. 2003;37(3):139-41 (In Russ.) https://doi.org/10.1023/A:1024586630954
2. Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. Combination therapy in combating cancer. Onco-target. 2017;8(23):38022—43. https://doi.org/10.18632/oncotar-get.16723
3. Gus'kova TA. Toxicology of drugs. Moscow: MDV; 2008 (In Russ.)
4. Goodman LS, Wintrobe MM, Dameshek W, Goodman MJ, Gilman A, McLennan MT. Nitrogen mustard therapy. Use of meth-yl-bis(beta-chloroethyl)amine hydrochloride and tris(beta-chloroethyl)amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. J Am Med Assoc. 1984;251(17):2255-61. https://doi.org/10.1001/jama.1984.03340410063036
5. Choudary J, Contrera JF, DeFelice A, DeGeorge JJ, Farrelly JG, Fitzgerald G, et al. Response to Monro and Mehta proposal for use of single-dose toxicology studies to support single-dose studies of new drugs in humans. Clin Pharmacol Ther. 1996;59(3):265-7. https://doi.org/10.1016/s0009-9236(96)80003-8
6. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495-7. https://doi.org/10.1038/256495a0
7. Faqi AS, ed. А comprehensive guide to toxicology in nonclinical drug development. 2nd ed. New York; Elsevier: 2016.
8. Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353:172-87. https://doi.org/10.1056/NEJMra044389
9. Chen HX, Cleck JN. Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol. 2009;6(8):465-77. https://doi.org/10.1038/nrclinonc.2009.94
10. Scott AM, Allison JP, Wolchok JD. Monoclonal antibodies in cancer therapy. CancerImmun. 2012;12:14. PMID:22896759
11. Chubenko VA. Complications of targeted therapy. Prakticheskaya onkologiya = Practical Oncology. 2010;11(3):192-202 (In Russ.)
12. Tsimberidou AM. Targeted therapy in cancer. Cancer Chemother Pharmacol. 2015;76(6):11 13-32. https://doi.org/10.1007/s00280-015-2861-1
13. Engalycheva GN, Syubaev RD, Goryachev DV. Quality standards of preclinical pharmacological studies. Vedomosti Nauchnogo tsentra ekspertizy sredstv medi-tsinskogo primeneniya = The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2019;9(4):248-55 (In Russ.) https://doi.org/10.30895/1991-2919-2019-9-4-248-255
14. DeVita Jr VT, Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68(21):8643-53. https://doi.org/10.1158/0008-5472.CAN-07-6611
15. Syubaev RD, Engalycheva GN, Goryachev DV, Sokolov AV, Chistyakov VV, Stepanova ES. Expert evaluation of preclinical toxicokinetic studies of pharmaceuticals (review). Pharmaceutical Chemistry Journal. 2018;52(9):753-7 (In Russ.) https://doi.org/10.1007/s11094-018-1894-2
16. Puyo S, Montaudon D, Pourquie P. From old alkylating agents to new minor groove binders. Crit Rev Oncol Hematol. 2014;89(1):43-61. https://doi.org/10.1016/j.critrevonc.2013.07.006
17. Kryshen KL, Katelnikova AE, Muzhikyan AA, Маkarova MN, Makarov VG. Regulatory and methodological aspects of studying allergenic properties of new medicines at the preclinical stage. Vedomosti Nauchnogo tsentra ekspertizy sredstv meditsinskogo primeneniya = The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2018;8(1):44-55 (In Russ.) https://doi.org/10.30895/1991-2919-2018-8-1-44-55
18. Tiwari M. Antimetabolites: established cancer therapy. J Cancer Res Ther. 2012;8(4):510-9. https://doi.org/10.4103/0973-1482.106526
19. Choquet Kastylevsky G, Descotes J. Value of animal models for predicting hypersensitivity reactions to medicinal products. Toxicology. 1998;129(1):27-35. https://doi.org/10.1016/s0300-483x(98)00060-2
20. De Abreu RA, Lambooy LH, Ahment K, Brouwer C, Keizer-Garrit-sen JJ, Bokkerink JP, et al. 6-mercaptopurine: efficacy and bone marrow toxicity in childhood acute lymphoblastic leukemia. Adv Exp Med Biol. 2000;486:271-5. https://doi.org/10.1007/0-306-46843-3_53
21. Weaver JL, Staten D, Swann J, Armstrong G, Bates M, Hastings KL. Detection of systemic hypersensitivity to drugs using standard guinea pig assays. Toxicology. 2003;193(3):203-17. https://doi.org/10.1016/ s0300-483x(03)00267-1
22. Wei Y, Yang P, Cao S, Zhao L. The combination of curcumin and 5-fluorouracil in cancer therapy. Arch Pharm Res. 2018;41(1):1-13. https://doi.org/10.1007/s12272-017-0979-x
23. Freireich EJ, Gehan ЕА, Rail DP, Schmidt LH, Skipper HE. Quantitative comparison of toxicity of anticаnсеr agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemother Rep. 1966;50(4):219—44. PMID: 4957125
24. Carrillo E, Navarro SA, Ramirez A, Garcia MA, Grinan-Lison C, Peran M, et al. 5-Fluorouracil derivatives: a patent review (20122014). Expert Opin Ther Pat. 2015;25(10):1131-44. https://doi.org/10.1517/13543776.2015.1056736
25. Ulanova IP, Sidorov KK, Khalepo AN. On consideration of the bodu surface of experimental animals during toxicological studies. In: Letavet AA, Sanotsky IV. Toxicology of new industrial chemicals. Leningrad: Meditsina; 1968 (In Russ.)
26. Hortobagyi GN. Anthracyclines in the treatment of cancer. An overview. Drugs. 1997;54(Suppl. 4):1-7. https://doi.org/10.2165/00003495-199700544-00003
27. Tam К. Estimating the “First in human” dose—a revisit with particular emphasis on oncology drugs. ADMET & DMPK. 2013;1(4):63—75. https://doi.org/10.5599/admet.1.4.10
28. Arruebo M, Vilaboa N, Saez-Gutierrez B, Lambea J, Tres A, Valladares M, et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel). 2011;3(3):3279-330. https://doi.org/10.3390/cancers3033279
29. Johnson DE. Biotherapeutics: Challenges and opportunities for predictive toxicology of monoclonal antibodies. Int J Mol Sci. 2018;19(11):3685. https://doi.org/10.3390/ijms19113685
30. Wu P, Clausen MH, Nielsen TE. Allosteric small-molecule kinase inhibitors. Pharmacol Ther. 2015;156:59-68. https://doi.org/10.1016/j.pharmthera.2015.10.002
31. Brennan F, Kiessling A. In vitro assays supporting the safety of immunomodulatory antibodies. Toxicol In Vitro. 2017;45(Pt. 3):296-308. https://doi.org/10.1016Zj.tiv.2017.02.025
32. Pento JT. Monoclonal antibodies for the treatment of cancer. Anticancer Res. 2017;37(1 1):5935-9. https://doi.org/10.21873/anti-canres.12040
33.
34. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235-42. https://doi.org/10.1056/nejmoa011795
35.
36. Mounier N, Briere J, Gisselbrecht C, Emile JF, Lederlin P, Sebban C, et al. Rituximab plus CHOP (R-CHOP) overcomes bcl-2-as-sociated resistance to chemotherapy in elderly patients with diffuse large B-cell lymphoma (DLBCL). Blood. 2003;101(11):4279-84. https://doi.org/10.1182/blood-2002-11-3442
37. Quackenbush RC, Horner TJ, Williams VC, Giampietro P, Lin TS. Patients with relapsed follicular lymphoma treated with rituximab versus tositumomab and iodine I-131 tositumomab. Leuk Lymphoma. 2015;56(3):779-81. https://doi.org/10.3109/10428194.2014.927461
38. Muller V, Clemens M, Jassem J, Al-Sakaff N, Auclair P, Nuesch E, et al. Long-term trastuzumab (Herceptin") treatment in a continuation study of patients with HER2-positive breast cancer or HER2-positive gastric cancer. BMC Cancer. 2018;18(1):295. https://doi.org/10.1186/s12885-018-4183-2
39. Schneeweiss A, Chia S, Hickish T, Harvey V, Eniu A, Hegg R, et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). Ann Oncol. 2013;24(9):2278-84. https://doi.org/10.1093/annonc/mdt182
40. Vincenzi B, Zoccoli A, Pantano F, Venditti O, Galluzzo S. Cetuximab: from bench to bedside. Curr Cancer Drug Targets. 2010;10(1):80-95. https://doi.org/10.2174/156800910790980241
41. Poulin-Costello M, Azoulay L, Van Cutsem E, Peeters M, Siena S, Wolf M. An analysis of the treatment effect of panitumumab on overall survival from a phase 3, randomized, controlled, multicenter trial (20020408) in patients with chemotherapy refractory metastatic colorectal cancer. Target Oncol. 2013;8(2):127-36. https://doi.org/10.1007/s11523-013-0271-z
42. Keating GM. Bevacizumab: a review of its use in advanced cancer. Drugs. 2014;74(16):1891-925. https://doi.org/10.1007/s40265-014-0302-9
43. Bouchard H, Viskov C, Garcia-Echeverria C. Antibody-drug con-jugates—a new wave of cancer drugs. Bioorg Med Chem Lett. 2014;24(23):5357-63. https://doi.org/10.10167j.bmcl.2014.10.021
44. Barok M, Joensuu H, Isola J. Trastuzumab emtansine: mechanisms of action and drug resistance. Breast Cancer Res. 2014;16(2):209. https://doi.org/10.1186/bcr3621
45. Herrera A, Moskowitz A, Bartlett N, Vose J, Ramchandren R, Feldman TA, et al. Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2018;131(11):11183-94. https://doi.org/10.1182/blood-2017-10-811224
46. Beck A, Goetsch L, Dumontet C, Corvaia N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16(5):315-37. https://doi.org/10.1038/nrd.2016.268
47. Rossari F, Minutolo F, Orciuolo E. Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy. J Hematol Oncol. 2018;11(1):84. https://doi.org/10.1186/s13045-018-0624-2
48. Steins M, Thomas M, GeiBler M. Erlotinib. Recent Results Cancer Res. 2018;211:1-17. https://doi.org/10.1007/978-3-319-91442-8_1
49. Voigtlaender M, Schneider-Merck T, Trepel M. Lapatinib. Recent Results Cancer Res. 2018;211:19-44. https://doi.org/10.1007/978-3-319-91442-8_2
50. Imbulgoda A, Heng DYC, Kollmannsberger C. Sunitinib in the treatment of advanced solid tumors. Recent Results Cancer Res. 2014;201:165-84. https://doi.org/10.1007/978-3-642-54490-3_9
51. Fasolo A, Sessa C. Targeting mTOR pathways in human malignancies. Curr Pharm Des. 2012;18(19):2766-77. https://doi.org/10.2174/138161212800626210
52. Leonardi GC, Falzone L, Salemi R, Zanghi A, Spandidos DA, Mccu-brey JA, et al. Cutaneous melanoma: from pathogenesis to therapy (review). Int J Oncol. 2018;52(4):1071-80. https://doi.org/10.3892/ijo.2018.4287
53. Salemi R, Falzone L, Madonna G, Polesel J, Cina D, Mallardo D, et al. MMP-9 as a candidate marker of response to BRAF inhibitors in melanoma patients with BRAFV600E mutation detected in circulating-free DNA. Front Pharmacol. https://doi.org/10.3389/fphar.2018.00856
54. Goldschmidt H, Moreau P, Ludwig H, Niesvizky R, Chng WJ, Joshua D, et al. Carfilzomib-dexamethasone versus subcutaneous or intravenous bortezomib in relapsed or refractory multiple myeloma: secondary analysis of the phase 3 ENDEAVOR study. Leuk Lymphoma. 2018;59(6):1364-74. https://doi.org/10.1080/10428194.2017.1376743
55. Chen DS, Mellman I. Oncology meets immunology: The cancer-immunity cycle. Immunity. 2013;39(1):1-10. https://doi.org/10.1016/j.immuni.2013.07.012
56. Amdahl J, Chen L, Delea TE. Network meta-analysis of progression-free survival and overall survival in first-line treatment of BRAF mutation-positive metastatic melanoma. Oncol Ther. 2016;4(2):239—56. https://doi.org/10.1007/s40487-016-0030-2
57. Sakamuri D, Glitza IC, Betancourt Cuellar SL, Subbiah V, Fu S, Tsim-beridou AM, et al. Phase I dose-escalation study of anti-CTLA-4 antibody ipilimumab and lenalidomide in patients with advanced cancers. Mol Cancer Ther. 2018;17(3):671-6. https://doi.org/10.1158/1535-7163.mct-17-0673
58. Powles T, O'Donnell P, Massard C, Arkenau HT, Friedlander TW, Hoimes TJ, et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma. Updated results from a phase 1/2 open-label study. JAMA Oncol. 2017;3(9):e172411. https://doi.org/10.1001/jamaoncol.2017.2411
59. Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006;6(10):813-23. https://doi.org/10.1038/nrc1951
60. Moffat JG, Rudolph J, Bailey D. Phenotypic screening in cancer drug discovery—past, present and future. Nat Rev Drug Discov. 2014;13(8):588-602. https://doi.org/10.1038/nrd4366
61. Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda). 2017;32(4):266—77. https://doi.org/10.1152/physi-ol.00036.2016
62. Yu C, Mannan AM, Yvone GM, Ross KN, Zhang YL, Marton MA, et al. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines. Nat Biotechnol. 2016;34(4):419-23. https://doi.org/10.1038/nbt.3460
63. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603-7. https://doi.org/10.1038/nature11003
64. Morton CL, Houghton PJ. Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc. 2007;2(2):247-50. https://doi.org/10.1038/nprot.2007.25
65. Annibali D, Leucci E, Hermans E, Amant F. Development of patient-derived tumor xenograft models. Methods Mol Biol. 2019;1862:217— 25. https://doi.org/10.1007/978-1-4939-8769-6_15
66. Kersten K, de Visser KE, van Miltenburg MH, Jonkers Jos. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med. 2017;9(2):137-53. https://doi.org/10.15252/emmm.201606857
67. Zhou Q, Facciponte J, Jin M, Shen Q, Lin Q. Humanized NOD-SCID IL2rg-/- mice as a preclinical model for cancer research and its potential use for individualized cancer therapies. Cancer Lett. 2014;344(1):13-9. https://doi.org/10.1016Zj.canlet.2013.10.015
68. Wege AK, Schmidt M, Ueberham E, Ponnath M, Ortmann O, Brock-hoff G, et al. Co-transplantation of human hematopoietic stem cells and human breast cancer cells in NSG mice: a novel approach to generate tumor cell specific human antibodies. MAbs. 2014;6(4):968-77. https://doi.org/10.4161/mabs.29111
69. Gao H, Korn JM, Ferretti S, Monahan JE, Wang Y, Sing M, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med. 2015;21(11):1318-25. https://doi.org/10.1038/nm.3954
70. Hothorn LA. Statistical analysis of in vivo anticancer experiments: Tumor growth inhibition. Drug Inform J. 2006;40:229-38. https://doi.org/10.1177%2F009286150604000212
71. Wu J. Statistical inference for tumor growth inhibition T/C ratio. J Biopharm Stat. 2010;20(5):954-64. https://doi.org/10.1080%2F10543401003618983
72. Wu J, Houghton PJ. Interval approach to assessing antitumor activity for tumor xenograft studies. Pharm Stat. 2010;9(1):46-54. https://doi.org/10.1002/pst.369
73. Garralda E, Dienstmann R, Tabernero J. Pharmacokinetic/pharma-codynamic modeling for drug development in oncology. Am Soc Clin Oncol Educ Book. 2017;37:210-15. https://doi.org/10.1200/edbk_180460
74. Berezovskaya IV. Classification of substances with respect to acute toxicity for parenteral administration. Pharmaceutical Chemistry Journal. 2003;37(3):139-41 (In Russ.) https://doi.org/10.1023/A:1024586630954
75. Gus'kova TA. Toxicology of drugs. Moscow: MDV; 2008 (In Russ.)
76. Choudary J, Contrera JF, DeFelice A, DeGeorge JJ, Farrelly JG, Fitzgerald G, et al. Response to Monro and Mehta proposal for use of single-dose toxicology studies to support single-dose studies of new drugs in humans. Clin Pharmacol Ther. 1996;59(3):265-7. https://doi.org/10.1016/s0009-9236(96)80003-8
77. Faqi AS, ed. А comprehensive guide to toxicology in nonclinical drug development. 2nd ed. New York; Elsevier: 2016.
78. Chen HX, Cleck JN. Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol. 2009;6(8):465-77. https://doi.org/10.1038/nrclinonc.2009.94
79. Chubenko VA. Complications of targeted therapy. Prakticheskaya onkologiya = Practical Oncology. 2010;11(3):192-202 (In Russ.)
80. Engalycheva GN, Syubaev RD, Goryachev DV. Quality standards of preclinical pharmacological studies. Vedomosti Nauchnogo tsentra ekspertizy sredstv medi-tsinskogo primeneniya = The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2019;9(4):248-55 (In Russ.) https://doi.org/10.30895/1991-2919-2019-9-4-248-255
81. Syubaev RD, Engalycheva GN, Goryachev DV, Sokolov AV, Chistyakov VV, Stepanova ES. Expert evaluation of preclinical toxicokinetic studies of pharmaceuticals (review). Pharmaceutical Chemistry Journal. 2018;52(9):753-7 (In Russ.) https://doi.org/10.1007/s11094-018-1894-2
82. Kryshen KL, Katelnikova AE, Muzhikyan AA, Маkarova MN, Makarov VG. Regulatory and methodological aspects of studying allergenic properties of new medicines at the preclinical stage. Vedomosti Nauchnogo tsentra ekspertizy sredstv meditsinskogo primeneniya = The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2018;8(1):44-55 (In Russ.) https://doi.org/10.30895/1991-2919-2018-8-1-44-55
83. Choquet Kastylevsky G, Descotes J. Value of animal models for predicting hypersensitivity reactions to medicinal products. Toxicology. 1998;129(1):27-35. https://doi.org/10.1016/s0300-483x(98)00060-2
84. Weaver JL, Staten D, Swann J, Armstrong G, Bates M, Hastings KL. Detection of systemic hypersensitivity to drugs using standard guinea pig assays. Toxicology. 2003;193(3):203-17. https://doi.org/10.1016/ s0300-483x(03)00267-1
85. Freireich EJ, Gehan ЕА, Rail DP, Schmidt LH, Skipper HE. Quantitative comparison of toxicity of anticаnсеr agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemother Rep. 1966;50(4):219—44. PMID: 4957125
86. Ulanova IP, Sidorov KK, Khalepo AN. On consideration of the bodu surface of experimental animals during toxicological studies. In: Letavet AA, Sanotsky IV. Toxicology of new industrial chemicals. Leningrad: Meditsina; 1968 (In Russ.)
87. Tam К. Estimating the “First in human” dose—a revisit with particular emphasis on oncology drugs. ADMET & DMPK. 2013;1(4):63—75. https://doi.org/10.5599/admet.1.4.10
88. Johnson DE. Biotherapeutics: Challenges and opportunities for predictive toxicology of monoclonal antibodies. Int J Mol Sci. 2018;19(11):3685. https://doi.org/10.3390/ijms19113685
89. Brennan F, Kiessling A. In vitro assays supporting the safety of immunomodulatory antibodies. Toxicol In Vitro. 2017;45(Pt. 3):296-308. https://doi.org/10.1016Zj.tiv.2017.02.025
90.
91.
Supplementary files
![]() |
1. Table 1 | |
Subject | Monoclonal antibodies (mAbs) used worldwide for cancer therapy | |
Type | Результаты исследования | |
Download
(435KB)
|
Indexing metadata ▾ |
![]() |
2. Table 2 | |
Subject | Targeted drugs (small molecules) used worldwide for cancer therapy | |
Type | Результаты исследования | |
Download
(269KB)
|
Indexing metadata ▾ |
Review
For citations:
Bezborodova O.A., Pankratov A.A., Nemtsova E.R., Venediktova Yu.B., Vorontsova M.S., Engalycheva G.N., Syubaev R.D. Anti-Tumour Drugs: Planning Preclinical Efficacy and Safety Studies. The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2020;10(2):96-110. (In Russ.) https://doi.org/10.30895/1991-2919-2020-10-2-96-110