Preview

Regulatory Research and Medicine Evaluation

Advanced search

Biological mechanisms of natural cytoprotection - a promising trend in the development of new medicines aimed at prevention and treatment of preeclampsia

Abstract

Preeclampsia is a frequent and dangerous disease in pregnancy which has shown no decrease in incidence. The article describes preeclampsia pathogenesis as reported in recent studies. A promising trend in the development of new medicines aimed at prevention and treatment of preeclampsia is the activation of biological processes of cytoprotection which arise during ischemic preconditioning. The article cites experimental and clinical data that help to justify the good potential of this area of research.

About the Authors

M. V. Pokrovsky
Belgorod State National Research University
Russian Federation


V. V. Gureev
Belgorod State National Research University
Russian Federation


E. G. Stupakova
Kursk Regional Perinatal Center
Russian Federation


O. E. Antsiferova
Belgorod State National Research University
Russian Federation


T. I. Lokteva
Belgorod State National Research University
Russian Federation


L. A. Zhilinkova
Kursk Institute of Social Education (Branch), Russian State Social University
Russian Federation


References

1. WHO. Maternal mortality. Newsletter ¹ 348. May 2012 http://www.who.int/mediacentre/factsheets/fs348/ru/index.html (in Russian).

2. Kolgushkina TN. Preeclampsia (etiopathogenesis, clinical picture, diagnosis, treatment): method. Recommendation. Minsk: MGMI; 2000.

3. Shuvalova MP, Frolova OG, Ratushnyak SS, Grebennik TK, Guseva EV. Pre-eclampsia and eclampsia as a cause of maternal mortality. Akusherstvo i ginekologiya 2014; (1): 81–7 (in Russian).

4. Reznikova LB. Endothelioprotective activity of GABA derivatives in experimental gestosis. Dr. Med. Sci [dissertation]. Volgograd; 2013 (in Russian).

5. The Federal State Statistics Service. Available from: http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/ru/statistics/population/healthcare/(in Russian).

6. Savelieva GM, Shalina RI, Panina OB, Kurtser MA. Obstetrics: a textbook. Moscow: GEOTAR Media; 2011 (in Russian).

7. Sánchez-Aranguren LC, Prada CE, Riaño-Medina CE, Lopez M. Endothelial dysfunction and preeclampsia: role of oxidative stress. Front Physiol. 2014; (5): 372.

8. Scioscia M, Karumanchi SA, Goldman-Wohl D, Robillard PY. Endothelial dysfunction and metabolic syndrome in preeclampsia: an alternative viewpoint. J Reprod Immunol. 2015. pii: S0165–0378(15)00027–3. doi: 10.1016/j.jri.2015.01.009.

9. Zainulina MS. Endothelial dysfunction and its markers in preeclampsia. Zhurnal akusherstva i zhenskih bolezney 1997; (3): 18–22 (in Russian).

10. Gureev VV. Endothelial dysfunction—a central element in the pathogenesis of preeclampsia. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta 2012; 4(123): 5–12 (in Russian).

11. Bloschinskaya IA. The functional state of the vascular endothelium and microcirculation disorders in pregnancy complicated by preeclampsia and the effects of normobaric hypoxic therapy. Dr. Med. Sci [dissertation]. Khabarovsk: 2003 (in Russian).

12. Pereira RD, De Long NE, Wang RC, Yazdi FT, Holloway AC, Raha S. Angiogenesis in the Placenta: The Role of Reactive Oxygen Species Signaling. Biomed Res Int. 2015; 2015:814543. doi: 10.1155/2015/814543.

13. Verlohren S, Geusens N, Morton J, Verhaegen I, Hering L, Herse F, et al. Inhibition of trophoblast-induced spiral artery remodeling reduces placental perfusion in rat pregnancy. Hypertension 2010; 56(2): 304–10.

14. Ducray JF, Naicker T, Moodley J. Pilot study of comparative placental morphometry in pre-eclamptic and normotensive pregnancies suggests possible maladaptations of the fetal component of the placenta. Eur J Obstet Gynecol Reprod Biol. 2011; 156(1): 29–34.

15. van Oppenraaij RHF, Bergen NE, Duvekot JJ, de Krijger RR, Hop Ir WCJ, Steegers EAP, et al. Placental vascularization in early onset small for gestational age and preeclampsia. Reprod Sci. 2011; 18(6): 586–93.

16. Wang QJ, Song BF, Zhang YH, Ma YY, Shao QQ, Liu J, et al. Expression of RGC32 in human normal and preeclamptic placentas and its role in trophoblast cell invasion and migration. Placenta 2015; 36(4): 350–6.

17. Bloschinskaya IA. The role of the main vasoactive factors of the vascular endothelium in the development of preeclampsia. Rossiyskiy vestnik akushera-ginekologa 2003; (4): 7–10 (in Russian).

18. Sidorova IS. Preeclampsia. Moscow: Meditsina; 2003 (in Russian).

19. Böger RH, Diemert A, Schwedhelm E, Lüneburg N, Maas R, Hecher K. The role of nitric oxide synthase inhibition by asymmetric dimethylarginine in the pathophysiology of preeclampsia. Gynecol Obstet Invest. 2010; 69(1): 1–13.

20. Alpoim PN, Godoi LC, Freitas LG, Gomes KB, Dusse LM. Assessment of L-arginine asymmetric 1 dimethyl (ADMA) in early-onset and late-onset (severe) preeclampsia. Nitric Oxide 2013; (1): 81–2.

21. Augustine MS, Rogers LK. Measurement of arginine metabolites: regulators of nitric oxide metabolism. Curr Protoc Toxicol. 2013. doi: 10.1002/0471140856.tx1716s58.

22. Noorbakhsh M, Kianpour M, Nematbakhsh M. Serum levels of asymmetric dimethylarginine, vascular endothelial growth factor, and nitric oxide metabolite levels in preeclampsia patients. ISRN Obstet Gynecol. 2013. doi: 10.1155/2013/104213.

23. Laskowska M, Laskowska K, Oleszczuk J. The relation of maternal serum eNOS, NOSTRIN and ADMA levels with aetiopathogenesis of preeclampsia and/or intrauterine fetal growth restriction. J Matern Fetal Neonatal Med. 2015; 28(1): 26–32.

24. Micle O, Muresan M, Antal L. The influence of homocysteine and oxidative stress on pregnancy outcome. J Med Life 2012; 5(1): 68–73.

25. Krukier II. The processes of radical formation in the placenta during placental insufficiency. Rossiyskiy vestnik akushera-ginekologa 2004; (4): 6–8 (in Russian).

26. Khetsuriani T. Role of oxygenic stress and 1-receptors in the development of pre-eclampsia and its pathogenetic treatment. Dr. Med. Sci [thesis]. Tbilisi; 2006 (in Russian).

27. Bouras G, Deftereos S, Tousoulis D, Giannopoulos G, Chatzis G, Tsounis D, et al. Asymmetric Dimethylarginine (ADMA): a promising biomarker for cardiovascular disease? Curr Top Med Chem. 2013; 13(2): 180–200.

28. Yi-Ping Leng, Ni Qiu, Wei-jin Fang, Mei Zhang, Zhi-Min He. Involvement of increased endogenous asymmetric dimethylarginine in the hepatic endoplasmic reticulum stress of type 2 diabetic rats. doi: 10.1371/journal.pone.0097125.

29. Ariza AC, Bobadilla NA, Halhali A. Endothelin 1 and angiotensin II in preeclampsia. Rev Invest Clin. 2007; 59(1): 48–56.

30. Guibourdenche J, Leguy MC, Tsatsaris V. Biology and markers of preeclampsia. Ann Biol Clin. 2013; 71: 79–87.

31. Blois SM, Dechend R, Barrientos G, Staff AC. A potential pathophysiological role for galectins and the renin-angiotensin system in preeclampsia. Cell Mol Life Sci. 2015; 72(1): 39–50.

32. Thomason J, Reyes M, Allen SR, Jones RO, Beeram MR, Kuehl TJ, et al. Elevation of (Pro)Renin and (Pro)Renin Receptor in Preeclampsia. Am J Hypertens. 2015; 28(10): 1277–84.

33. Wang J, Cui Y, Ge J, Ma M. Folic acid supplementation attenuates hyperhomocysteinemia- induced preeclampsia-like symptoms in rats. Neural Regen Res. 2012; 7(25): 1954–9.

34. Pérez-Sepúlveda A, España-Perrot PP, Fernández XB, Ahumada V, Bustos V, Arraztoa JA, et al. Levels of key enzymes of methionine-homocysteine metabolism in preeclampsia. Biomed Res Int. 2013. 2013:731962. doi: 10.1155/2013/731962.

35. Powers RW, Gandley RE, Lykins DL, Roberts JM. Moderate hyperhomocysteinemia decreases endothelial-dependent vasorelaxation in pregnant but not nonpregnant mice. Hypertension 2004; 44: 327–33.

36. Shcherbakova ES, Dunaeva AR, Zagidullin NSh. Ischemic preconditioning in internal medicine and vascular surgery. Meditsinskiy vestnik Bashkortostana 2014; 9(1): 118–23 (in Russian).

37. Karpov ES, Kotelnikova EV, Lyamina NP. Ischemic preconditioning and its cardioprotective effect in patients with cardio-rehabilitation programs with coronary heart disease after percutaneous coronary intervention. Rossiyskiy kardiologicheskiy zhurnal 2012; 4(96): 104–8 (in Russian).

38. Griecsová L, Farkašová V, Gáblovský I, Khandelwal VK, Bernátová I, Tatarková Z, et al. Effect of maturation on the resistance of rat hearts against ischemia. Study of potential molecular mechanisms. Physiol Res 2015 Dec 15. [Epub ahead of print].

39. Morris CF, Tahir Ì, Arshid S, Castro MS, Fontes W. Reconciling the IPC and Two- Hit Models: Dissecting the Underlying Cellular and Molecular Mechanisms of Two Seemingly Opposing Frameworks. J Immunol Res. 2015. doi: 10.1155/2015/697193.

40. Alleman RJ, Stewart LM, Tsang AM, Brown DA. Why Does Exercise «Trigger» Adaptive Protective Responses in the Heart? Dose Response. 2015 Jan-Mar; 13(1). doi: 10.2203/dose-response.14–023.Alleman

41. Veighey K, Macallister RJ. Clinical applications of remote ischemic preconditioning. Cardiol Res Pract. 2012. 2012:620681. doi: 10.1155/2012/620681.

42. Kocman EA, Ozatik O, Sahin A, Guney T, Kose AA, Dag I, et al. Effects of ischemic preconditioning protocols on skeletal muscle ischemia- reperfusion injury. J Surg Res. 2015; 193(2): 942–52.

43. Lanza GA, Stazi A, Villano A, Torrini F, Milo M, Laurito M. Effect of Remote Ischemic Preconditioning on Platelet Activation Induced by Coronary Procedures. Am J Cardiol. 2016; 117(3): 359–65.

44. Kierulf-Lassen Ñ, Kristensen ML, Birn H, Jespersen B,Nørregaard R. No Effect of Remote Ischemic Conditioning Strategies on Recovery from Renal Ischemia-Reperfusion Injury and Protective Molecular Mediators. PLoS One. 2015 Dec 31; 10(12): e0146109. doi: 10.1371/journal.pone.0146109. eCollection 2015.

45. Damous LL, da Silva SM, Carbonel AA, Simões MJ, Baracat EC, Montero EF. Progressive Evaluation of Apoptosis, Proliferation, and Angiogenesis in Fresh Rat Ovarian Autografts Under Remote Ischemic Preconditioning. Reprod Sci. 2015 Dec 16. pii: 1933719115620493. [Epub ahead of print].

46. Deng QW, Xia ZQ, Qiu YX, Wu Y, Liu JX, Li C, et al. Clinical benefits of aortic cross-clamping versus limb remote ischemic preconditioning in coronary artery bypass grafting with cardiopulmonary bypass: a meta-analysis of randomized controlled trials. J Surg Res. 2015; 193(1): 52–68.

47. Bautin AE, Galagudza MM, Datsenko SV, Tashkhanov DM, Marichev AO, Bakanov AU, et al. Effect of ischemic preconditioning on the distant during the perioperative period in isolated aortic valve replacement. Anestesiologiya i reanimatologiya 2014; (3): 11–7 (in Russian).

48. Gallyamov NV. Ischemic preconditioning and remote ischemic preconditioning in healthy subjects and patients with stable angina, and their effect on platelet aggregation. Dr. Med. Sci [dissertation]. Kazan; 2009 (in Russian).

49. Maslov LN, Kolar F, Krig T. Distant ischemic preconditioning. Uspehi fiziologicheskih nauk 2009; (4): 64–78 (in Russian).

50. Björnsson B, Winbladh A, Bojmar L, Sundqvist T, Gullstrand P, Sandström P. Conventional, but not remote ischemic preconditioning, reduces iNOS transcription in liver ischemia/reperfusion. World J Gastroenterol. 2014; 20(28): 9506–12.

51. Morris CFM, Tahir M, Arshid S, Castro MS, Fontes W. Reconciling the IPC and Two- Hit Models: Dissecting the Underlying Cellular and Molecular Mechanisms of Two Seemingly Opposing Frameworks. J Immunol Res. 2015. doi: 10.1155/2015/697193.

52. Sandanger O, Gao E, Ranheim T, Bliksoen M, Kaasboll OJ, Alfsnes K, et al. NLRP3 inflammasome activation during myocardial ischemia reperfusion is cardioprotective. Biochem Biophys Res Commun. 2016; 469(4): 1012–20.

53. Johnsen J, Pryds K, Salman R, Lofgren B, Kristiansen SB, Botker HE. The remote ischemic preconditioning algorithm: effect of number of cycles, cycle duration and effector organ mass on efficacy of protection. Basic Res Cardiol 2016; 111(2): 10.

54. Naryzhnaya NV, Maslov LN, Vychuzhanova EA, Sementsov AS, Podoksenov YuK, Portnichenko AG, et al. Effect of hypoxic preconditioning on the indicators of stress reaction in rats. Bulleten eksperimentalnoy biologii i meditsiny 2015; 159(4): 439 (in Russian).

55. Zarbock A, Schmidt C, Van Aken H, Wempe C, Martens S, Zahn PK, et al. Effects of remote ischemic preconditioning in high-risk patients undergoing cardiac surgery (Remote Impact): a randomized controlled trial. CMAJ 2015; 313(21): 2133–41.

56. Saxena S, Shukla D, Bansal A. Expression of Monocarboxylate Transporter Isoforms in Rat Skeletal Muscle Under Hypoxic Preconditioning and Endurance Training. High Alt Med Biol. 2015 Dec 30. [Epub ahead of print].

57. Zhao R, Feng J, He G. Hypoxia increases Nrf2-induced HO-1 expression via the PI3K/Akt pathway. Front Biosci (Landmark Ed) 2016; 21: 385–96.

58. Zhai X, Lin H, Chen Y, Chen X, Shi J, Chen O, et al. Hyperbaric oxygen preconditioning ameliorates hypoxia-ischemia brain damage by activating Nrf2 expression in vivo and in vitro. Free Radic Res. 2016; 4: 1–34.

59. Liu D, Liu X, Zhou T, Yao W, Zhao J, Zheng Z, et al. IRE1-RACK1 axis orchestrates ER stress preconditioning-elicited cytoprotection from ischemia/reperfusion injury in liver. J Mol Cell Biol. 2016; 8(2): 144–56.

60. Hong S, Ahn JY, Cho GS, Kim IH, Cho JH, Ahn JH, et al. Monocarboxylate transporter 4 plays a significant role in the neuroprotective mechanism of ischemic preconditioning in transient cerebral ischemia. Neural Regen Res. 2015; 10(10): 1604–11.

61. Zhang M, Gong JX, Wang JL, Jiang MY, Li L, Hu YY, et al. P38 MAPK Participates in the Mediation of GLT-1 Up-regulation During the Induction of Brain Ischemic Tolerance by Cerebral Ischemic Preconditioning. Mol Neurobiol. 2016 Jan 5. [Epub ahead of print].

62. Ji K, Xue L, Cheng J, Bai Y. Preconditioning of H2S inhalation protects against cerebral ischemia/reperfusion injury by induction of HSP70 through PI3K/Akt/Nrf2 pathway. Brain Res Bull. 2016; 121: 68–74.

63. Fang XZ, Huang TF, Wang CJ, Ge YL, Lin SY, Zhang Y. Preconditioning of physiological cyclic stretch attenuated HMGB1 expression in pathologically mechanical stretch-activated A549 cells and ventilator- induced lung injury rats through inhibition of IL-6/STAT3/SOCS3. Int Immunopharmacol. 2015; 31: 66–73.

64. Ávalos R, Martinez-Sanz R, Jiménez JJ, Iribarren JL, Montoto J, Lacruz A, et al. Levosimendan preconditioning in patients undergoing elective cardiac surgery with poor ejection fraction. preliminary results. J Cardiothorac Surg. 2015; 10(Suppl 1): A310. doi: 10.1186/1749–8090–10-S1-A310.

65. Behmenburg F, Dorsch M, Huhn R, Mally D, Heinen A, Hollmann MW. Impact of Mitochondrial Ca2+- Sensitive Potassium (mBKCa) Channels in Sildenafil-Induced Cardioprotection in Rats. PLoS One. 2015 Dec 15; 10(12): e0144737. doi: 10.1371/journal.pone.0144737.

66. Ansley DM, Raedschelders K, Choi PT, Wang B, Cook RC, Chen DD. Propofol cardioprotection for on-pump aortocoronary bypass surgery in patients with type 2 diabetes mellitus (PRO-TECT II): a phase 2 randomized-controlled trial. Can J Anaesth. 2016; 63(4): 442–5.

67. Li W, Jia D. Pharmacological preconditioning and postconditioning with nicorandil attenuates ischemia/reperfusion-induced myocardial necrosis and apoptosis in hypercholesterolemic rats. Exp Ther Med. 2015; 10(6): 2197–205.

68. Gureev VV, Pokrovsky MV, Korokin MV, Pokrovskaya TG, Gudyrev OS, Kochkarev VI, et al. ADMA-eNOS-deterministic ways of pharmacological correction of preeclampsia. Belgorod: Izdatelstvo BelGU; 2014 (in Russian).

69. Gureev VV. Investigation of the role of ischemic preconditioning in the distant correction of morphological and functional disturbances by short episodes of ischemia-reperfusion in the condition of ADMA-like preeclampsia. Kursk scientific- practical bulletin «Chelovek i ego zdorovie» 2012; (3): 5–9 (in Russian).

70. Gureev VV. Inos role in the correction of endothelial dysfunction in preeclampsia ADMA-like short episodes of ischemia-reperfusion in the experiment. Fundamentalnye issledovaniya 2012; (8)2: 298–301 (in Russian).

71. Gureev VV. The role of ATP-sensitive K+ channels in the correction of endothelial dysfunction in preeclampsia ADMA-like short episodes of ischemia- reperfusion in the experiment. Sovremennye problem nauki i obrazovaniya 2012; (5). Available from: http://www.science-education.ru/105-7053 (in Russian).

72. Gureev VV, Pokrovsky MV, Dolzhikov AA, Alekhin SA, Dolzhikova IN, Gureeva EG, et al. Correction of ischemic preconditioning distant endothelial dysfunction in ADMA- like experimental gestosis. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta 2012; 4(123): 128–34.

73. Gureev VV, Alehin SA, Pokrovskiy MV, Dolghikov AA, Korokin MV, Gudyrev OS, et al. Remote Ischemic Preconditioning Correction in ADMA-Like Gestosis Model. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2014; 5(5): 1095–8 (in Russian).

74. Gureev VV, Zhilinkova LA, Stupakova EG. Nikorandil tetrahydrobiopterin and resveratrol correction of endothelial dysfunction in modeling experimental preeclampsia. Fundamentalnye issledovaniya 2015; (1): 58–62 (in Russian).

75. Gureev VV, Alekhin SA, Dolzhikov AA, Mostovoy AS. Correction of ADMA-like preeclampsia in the experiment. Kursk scientific-practical bulletin «Chelovek i ego zdorovie» 2012; (1): 14–9 (in Russian).


Review

For citations:


Pokrovsky M.V., Gureev V.V., Stupakova E.G., Antsiferova O.E., Lokteva T.I., Zhilinkova L.A. Biological mechanisms of natural cytoprotection - a promising trend in the development of new medicines aimed at prevention and treatment of preeclampsia. The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2016;(4):20-27. (In Russ.)

Views: 715


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-3062 (Print)
ISSN 3034-3453 (Online)