Preview

Regulatory Research and Medicine Evaluation

Advanced search

Pharmacopoeial Requirements for Elemental Impurities in Radiopharmaceuticals (Review)

https://doi.org/10.30895/1991-2919-2025-751

Abstract

INTRODUCTION. Current risk-based general strategies for the control of elemental impurities in medicinal products, as documented in the elemental impurity monographs of national and world pharmacopoeias, do not apply to radiopharmaceuticals. Manufacturers of radiopharmaceuticals have to determine and substantiate the lists of specified elemental impurities and their limits.

AIM. This study aimed to develop a control strategy for elemental impurities in radiopharmaceuticals by analysing the requirements of national and world pharmacopoeias to the levels of specified elemental impurities in radiopharmaceuticals.

DISCUSSION. Limits for the amounts of elemental impurities in specific radiopharmaceuticals are provided in individual monographs of pharmacopoeias (24 monographs in the European Pharmacopoeia, 7 monographs in the Indian Pharmacopoeia, 7 monographs in the State Pharmacopoeia of the Russian Federation, 6 monographs in the United States Pharmacopeia, 6 monographs in the Japanese Pharmacopoeia, 6 monographs in the Pharmacopoeia of the People’s Republic of China, and 4 monographs in the Korean Pharmacopoeia). Individual monographs for the same radiopharmaceuticals differ in the lists of elemental impurities and the corresponding limits. Moreover, these monographs lack common criteria for selecting elemental impurities and establishing limits for them. In most cases, limits are set for the parent non-radioactive elements, the elements that are added as components of radiolytic stabilisers or sorbents (Ti, Zr, Sn, and Al oxides), and the elements that decrease radiolabelling efficiency (Cu, Fe, Pb, and Zn in 177Lu solutions; Cu, Cd, and Fe in 111InCl solutions; Cd, Cu, Fe, Pb, and Zn in 90Y solutions; etc.). Elemental impurity limits for radiopharmaceuticals are calculated on the basis of the acceptable impact on the physicochemical, biological, and radiochemical properties of the product used and the dose administered. The elements that lack specified permitted daily exposure (PDE) limits are subject to specification if these elements affect the target organ or the process of medicinal product radiolabelling. There is also no unified approach to limiting the amounts of elemental impurities in radiopharmaceutical precursors.

CONCLUSIONS. This article provides radiopharmaceutical manufacturers with a control strategy for elemental impurities in finished medicinal products, based on assessing the risk of elemental impurities having a negative impact on the quality attributes of medicinal products. This strategy includes generalised criteria for selecting the list of specified impurities and their limits for radiopharmaceuticals, which significantly streamlines the preparation of regulatory documentation concerning this quality attribute.

About the Authors

V. M. Shchukin
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Victor M. Shchukin, Cand. Sci. (Pharm.)

8/2 Petrovsky Blvd, Moscow 127051



N. E. Kuz'mina
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Nataliya E. Kuz’mina, Dr. Sci. (Chem.)

8/2 Petrovsky Blvd, Moscow 127051



R. D. Ruziev
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Ramzes D. Ruziev, Cand. Sci. (Chem.)

8/2 Petrovsky Blvd, Moscow 127051



D. A. Pripadchev
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Dmitrii A. Pripadchev, Cand. Sci. (Chem.)

8/2 Petrovsky Blvd, Moscow 127051



M. A. Kuznetsov
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Mikhail A. Kuznetsov

8/2 Petrovsky Blvd, Moscow 127051



References

1. Gillings N, Hjelstuen O, Behe M, Decristoforo C, Elsinga PH, Ferrari V, et al. EANM guideline on quality risk management for radiopharmaceuticals. Eur J Nucl Med Mol Imaging. 2022;49(10):3353–64. https://doi.org/10.1007/s00259-022-05738-4

2. Kodina GE, Malysheva AO. The main issues of quality assurance of radiopharmaceuticals. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2019;9(4):216–30 (In Russ.). https://doi.org/10.30895/1991-2919-2019-9-4-216-230

3. Kosenko VV, Trapkova AA, Kalmykov SN. Regulation of radiopharmaceutical products. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2022;12(4):379–88 (In Russ.). https://doi.org/10.30895/1991-2919-2022-12-4-379-388

4. Koziorowski J, Behe M, Decristoforo C, Ballinger J, Elsinga P, Ferrari V, et al. Position paper on requirements for toxicological studies in the specific case of radiopharmaceuticals. EJNMMI Radiopharm Chem. 2017;1(1):1. https://doi.org/10.1186/s41181-016-0004-6

5. Radchenko V, Baimukhanova A, Filosofov D. Radiochemical aspects in modern radiopharmaceutical trends: A practical guide. Solvent Extr Ion Exch. 2021;39(7):714–44. https://doi.org/10.1080/07366299.2021.1874099

6. Talip Z, Favaretto C, Geistlich S, van der Meulen NP. A step-by-step guide for the novel radiometal production for medical applications: Case studies with <sup>68</sup>Ga, <sup>44</sup>Sc, <sup>177</sup>Lu and <sup>161</sup>Tb. Molecules. 2020;25(4):966. https://doi.org/10.3390/molecules25040966

7. Sharp PF, Goatman KA. Nuclear medicine imaging. In: Sharp PF, Gemmel HG, Murray AD, eds. Practical nuclear medicine. London: Springer; 2005. P. 1–19. https://doi.org/10.1007/b136183

8. Zeng D, Anderson CJ. Rapid and sensitive LC-MS approach to quantify non-radioactive transition metal impurities in metal radionuclides. Chem Commun (Camb). 2013;49(26):2697–9. https://doi.org/10.1039/c3cc39071c

9. Papagiannopoulou D. Technetium-99m radiochemistry for pharmaceutical applications. J Labelled Comp Radiopharm. 2017;60(11):502–20. https://doi.org/10.1002/jlcr.3531

10. Breeman WAP, de Jong M, Visser TJ, Erion L, Krenning EP. Optimising conditions for radiolabelling of DOTA-peptides with <sup>90</sup>Y, <sup>111</sup>In and <sup>177</sup>Lu at high specific activities. Eur J Nucl Med Mol Imaging. 2003;30(6):917–20. https://doi.org/10.1007/s00259-003-1142-0

11. Ermert J, Benešová M, Hugenberg V, Gupta V, Spahn I, Pietzsch H-J, et al. Radiopharmaceutical sciences. In: Ahmadzadehfar H, Biersack HJ, Freeman L, Zuckier L, eds. Clinical nuclear medicine. Springer Cham; 2020. P. 49–193. https://doi.org/10.1007/978-3-030-39457-8_2

12. Saha GB. Characteristics of specific radiopharmaceuticals. In: Saha GB, ed. Fundamentals of nuclear pharmacy. New York: Springer; 2003. P. 105–24. https://doi.org/10.1007/978-1-4757-4024-0

13. Sampson CB. Adverse reactions and drug interactions with radiopharmaceuticals. Drug Saf. 1993;8(4):280–94. https://doi.org/10.2165/00002018-199308040-00003

14. Saha GB. Radionuclide generators. In: Saha GB, ed. Fundamentals of nuclear pharmacy. New York: Springer; 2003. P. 53–66. https://doi.org/10.1007/978-1-4757-4024-0

15. Mettler FA, Guiberteau MJ. Radioactivity, radionuclides, and radiopharmaceuticals. In: Mettler FA, Guiberteau MJ. Essentials of nuclear medicine and molecular imaging. Philadelphia: Elsevier; 2019. P. 1–18. https://doi.org/10.1016/C2016-0-00043-8

16. Vallabhajosula S, Killeen RP, Osborne JR. Altered biodistribution of radiopharmaceuticals: Role of radiochemical/pharmaceutical purity, physiological, and pharmacologic factors. Semin Nucl Med. 2010;40(4):220–41. https://doi.org/10.1053/j.semnuclmed.2010.02.004

17. Forgács V, Fekete A, Gyuricza B, Szücs D, Trencsényi G, Szikra D. Methods for the determination of transition metal impurities in cyclotron-produced radiometals. Pharmaceuticals. 2022;15(2):147–58. https://doi.org/10.3390/ph15020147

18. Kilian K, Chabecki B, Kiec J, Kunka A, Panas B, Wójcik M, et al. Synthesis, quality control and determination of metallic impurities in F-fludeoxyglucose production process. Rep Pract Oncol Radiother. 2014;19(Suppl):22–31. https://doi.org/10.1016/j.rpor.2014.03.001

19. Wu F, Chen M, Wang X, Wang C, Sun M, Qiu S, et al. Impurity of gallium-[<sup>68</sup>Ga] chloride solution from generator. Atomic Energy Science and Technology. 2023;57(10):1889–98 (In Chinese). https://doi.org/10.7538/yzk.2022.youxian.0897

20. Hung JC. Quality control in nuclear pharmacy. In: Kowal sky R, ed. Radiopharmaceuticals in nuclear pharmacy and nuclear medicine. Washington, DC: American Pharmacists Association; 2020. P. 345–80. https://doi.org/10.21019/9781582122830.ch14


Supplementary files

1. Tables 2–7
Subject
Type Исследовательские инструменты
Download (322KB)    
Indexing metadata ▾

Review

For citations:


Shchukin V.M., Kuz'mina N.E., Ruziev R.D., Pripadchev D.A., Kuznetsov M.A. Pharmacopoeial Requirements for Elemental Impurities in Radiopharmaceuticals (Review). Regulatory Research and Medicine Evaluation. (In Russ.) https://doi.org/10.30895/1991-2919-2025-751

Views: 99


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-3062 (Print)
ISSN 3034-3453 (Online)