Preview

Regulatory Research and Medicine Evaluation

Advanced search

Liposomes as Drug Carriers: Classification, Preparation Methods, and Medicinal Use

https://doi.org/10.30895/1991-2919-2023-508

Abstract

Liposomes are one of the most well-known and promising nanoscale drug delivery systems. Liposomal medicinal products are successfully used in clinical practice for cardiovascular, oncological, dermatological, and other indications. The development of liposomes and their widespread implementation in clinical practice are relevant tasks.

The aim of the study was to summarise and analyse scientific data regarding the structure, composition, and classification of liposomes, as well as specific aspects of liposome production methods.

This review covers up-to-date information on marketed liposomal medicinal products. The authors illustrate how production methods affect the composition and structure of liposomes. The size and lamellarity are important characteristics of liposomes that determine the encapsulation efficiency and biodistribution of active pharmaceutical ingredients (APIs). The choice of excipients depends on the intended use of liposomal medicinal products. The article summarises the main liposome production methods, highlighting specific usage aspects, advantages and disadvantages. Conventional liposome production methods are easy to apply and do not require complex equipment, and their principal disadvantages include the low efficiency of API encapsulation within liposomes and the high complexity of scaling up technological processes. The authors pay special attention to microfluidic techniques for liposome preparation, which are characterised by a highly controlled technological process (in terms of size distribution and lamellarity), high reproducibility, and scalability to the level of industrial production and are applicable to encapsulating different APIs.

About the Authors

N. I. Burdaev
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Nilolay I. Burdaev

8/2 Petrovsky Blvd, Moscow 127051



L. L. Nikolaeva
N.N. Blokhin National Medical Research Centre of Oncology; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Ludmila L. Nikolaeva, Cand. Sci. (Pharm.)

24 Kashirskoe Hwy, Moscow 115522;
8/2 Trubetskaya St., Moscow 119991



V. V. Kosenko
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Valentina V. Kosenko, Cand. Sci. (Pharm.)

8/2 Petrovsky Blvd, Moscow 127051



Z. S. Shprakh
N.N. Blokhin National Medical Research Centre of Oncology; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Zoya S. Shprakh, Dr. Sci. (Pharm.)

24 Kashirskoe Hwy, Moscow 115522;
8/2 Trubetskaya St., Moscow 119991



N. D. Bunyatyan
Scientific Centre for Expert Evaluation of Medicinal Products; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Natalia D. Bunyatyan, Dr. Sci. (Pharm.), Professor

8/2 Petrovsky Blvd, Moscow 127051;
8/2 Trubetskaya St., Moscow 119991



References

1. Gregoriadis G. Liposomes in drug delivery: how it all happened. Pharmaceutics. 2016;8(2):19. https://doi.org/10.3390/pharmaceutics8020019

2. Filipczak N, Pan J, Yalamarty SSK, Torchilin VP. Recent advancements in liposome technology. Adv Drug Deliver Rev. 2020;156:4–22. https://doi.org/10.1016/j.addr.2020.06.022

3. Sanarova E, Lantsova A, Oborotova N, Orlova O, Polozkova A, Dmitrieva M, Nikolaeva N. Liposome drug delivery. J Pharm Sci & Res. 2019;11(3):1148–55.

4. Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev. 2015;115(19):10938–66. https://doi.org/10.1021/acs.chemrev.5b00046

5. Almeida B, Nag OK, Rogers KE, Delehanty JB. Recent progress in bioconjugation strategies for liposome-mediated drug delivery. Molecules. 2020;25(23):5672. https://doi.org/10.3390/molecules25235672

6. Crommelin DJA, van Hoogevest P, Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what? J Control Release. 2020;318:256–63. https://doi.org/10.1016/j.jconrel.2019.12.023

7. Shan X, Gong X, Li J, Wen J, Li Y, Zhang Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm Sin B. 2022;12(7):3028–48. https://doi.org/10.1016/j.apsb.2022.02.025

8. Liu P, Chen G, Zhang J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules. 2022;27(4):1372. https://doi.org/10.3390/molecules27041372

9. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13(1):238–52. https://doi.org/10.1016/s0022-2836(65)80093-6

10. Gulati M, Bajad S, Singh S, Ferdous AJ, Singh M. Development of liposomal amphotericin B formulation. J Microencapsul. 1998;15(2):137–51. https://doi.org/10.3109/02652049809006844

11. Barenholz Y. Doxil® — the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34. https://doi.org/10.1016/j.jconrel.2012.03.020

12. Zhao M, Ding X, Shen J, Zhang X, Ding X, Xu B. Use of liposomal doxorubicin for adjuvant chemotherapy of breast cancer in clinical practice. J Zhejiang Univ Sci B. 2017;18(1):15–26. https://doi.org/10.1631/jzus.B1600303

13. Petre CE, Dittmer DP. Liposomal daunorubicin as treatment for Kaposi’s sarcoma. Int J Nanomedicine. 2007;2(3):277–88. PMID: 18019828

14. Taléns-Visconti R, Díez-Sales O, de Julián-Ortiz JV, Nácher A. Nanoliposomes in cancer therapy: marketed products and current clinical trials. Int J Mol Sci. 2022;23(8):4249. https://doi.org/10.3390/ijms23084249

15. Stone NR, Bicanic T, Salim R, Hope W. Liposomal amphotericin B (AmBisome(®)): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs. 2016;76(4):485–500. https://doi.org/10.1007/s40265-016-0538-7

16. Shirley M. Amikacin liposome inhalation suspension: a review in Mycobacterium avium complex lung disease. Drugs. 2019;79(5):555–62. https://doi.org/10.1007/s40265-019-01095-z

17. Wang N, Chen M, Wang T. Liposomes used as a vaccine adjuvant-delivery system: from basics to clinical immunization. J Control Release. 2019;303:130–50. https://doi.org/10.1016/j.jconrel.2019.04.025

18. Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2):12. https://doi.org/10.3390/pharmaceutics9020012

19. Andra VVSNL, Pammi SVN, Bhatraju LVKP, Ruddaraju LK. A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents. Bionanoscience. 2022;12(1):274–91. https://doi.org/10.1007/s12668-022-00941-x

20. Ilfeld BM, Eisenach JC, Gabriel RA. Clinical effectiveness of liposomal bupivacaine administered by infiltration or peripheral nerve block to treat postoperative pain. Anesthesiology. 2021;134(2):283–344. https://doi.org/10.1097/ALN.0000000000003630

21. Ren H, He Y, Liang J, Cheng Z, Zhang M, Zhu Y, et al. Role of liposome size, surface charge, and PEGylation on rheumatoid arthritis targeting therapy. ACS Appl Mater Interfaces. 2019;11(22):20304–15. https://doi.org/10.1021/acsami.8b22693

22. Tretiakova DS, Vodovozova EL. Liposomes as adjuvants and vaccine delivery systems. Biochem (Mosc) Suppl Ser A Membr Cell Biol. 2022;16(1):1–20. https://doi.org/10.1134/S1990747822020076

23. Mukhamadiyarov RA, Senokosova EA, Krutitsky SS, Voevoda DV, Pyshnaya IA, Ivanov VV, et al. Size-dependent ability of liposomes to accumulate in the ischemic myocardium and protect the heart. J Cardiovasc Pharm. 2018;72(3):143–52. https://doi.org/10.1097/FJC.0000000000000606

24. Zhang H. Thin-film hydration followed by extrusion method for liposome preparation. Methods Mol Biol. 2017;1522:17–22. https://doi.org/10.1007/978-1-4939-6591-5_2

25. Salehi B, Mishra AP, Nigam M, Kobarfard F, Javed Z, Rajabi S, et al. Multivesicular liposome (depofoam) in human diseases. Iran J Pharm Res. 2020;19(2):9–21. https://doi.org/10.22037/ijpr.2020.112291.13663

26. Salehi B, Selamoglu ZS, Mileski K, Pezzani R, Redaelli M, Cho WC, et al. Liposomal cytarabine as cancer therapy: from chemistry to medicine. Biomolecules. 2019;9(12):773. https://doi.org/10.3390/biom9120773

27. Chaurasiya A, Gorajiya A, Panchal K, Katke S, Singh AK. A review on multivesicular liposomes for pharmaceutical applications: preparation, characterization, and translational challenges. Drug Deliv Transl Res. 2022;12(7):1569–87. https://doi.org/10.1007/s13346-021-01060-y

28. Angst MS, Drover DR. Pharmacology of drugs formulated with DepoFoam™. Clin Pharmacokinet. 2006;45(12):1153–76. https://doi.org/10.2165/00003088-200645120-00002

29. Ibrahim M, Abuwatfa WH, Awad NS, Sabouni R, Husseini GA. Encapsulation, release, and cytotoxicity of doxorubicin loaded in liposomes, micelles, and metal-organic frameworks: a review. Pharmaceutics. 2022;14(2):254. https://doi.org/10.3390/pharmaceutics14020254

30. Beiranvand S, Eatemadi A, Karimi A. New updates pertaining to drug delivery of local anesthetics in particular bupivacaine using lipid nanoparticles. Nanoscale Res Lett. 2016;11(1):307–17. https://doi.org/10.1186/s11671-016-1520-8

31. Silverman JA, Deitcher SR. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol. 2013;71(3):555–64. https://doi.org/10.1007/s00280-012-2042-4

32. Venkatakrishnan K, Liu Y, Noe D, Mertz J, Bargfrede M, Marbury T, et al. Pharmacokinetics and pharmacodynamics of liposomal mifamurtide in adult volunteers with mild or moderate hepatic impairment. Br J Clin Pharmacol. 2014;77(6):998–1010. https://doi.org/10.1111/bcp.12261

33. Swenson CE, Perkins WR, Roberts P, Janoff AS. Liposome technology and the development of Myocet™ (liposomal doxorubicin citrate). Breast. 2001;10:1–7. https://doi.org/10.1016/S0960-9776(01)80001-1

34. Skupin-Mrugalska P, Piskorz J, Goslinski T, Mielcarek J, Konopka K, Düzgüneş N. Current status of liposomal porphyrinoid photosensitizers. Drug Discov Today. 2013;18(15–16):776–84. https://doi.org/10.1016/j.drudis.2013.04.003

35. Milano G, Innocenti F, Minami H. Liposomal irinotecan (Onivyde): exemplifying the benefits of nanotherapeutic drugs. Cancer Sci. 2022;113(7):2224–31. https://doi.org/10.1111/cas.15377

36. Dicko A, Kwak S, Frazier AA, Mayer LD, Liboiron BD. Biophysical characterization of a liposomal formulation of cytarabine and daunorubicin. Int J Pharm. 2010;391(1–2):248–59. https://doi.org/10.1016/j.ijpharm.2010.02.014

37. Li Z, Perkins W, Cipolla D. Robustness of aerosol delivery of amikacin liposome inhalation suspension using the eFlow® Technology. Eur J Pharm Biopharm. 2021;166:10–8. https://doi.org/10.1016/j.ejpb.2021.05.021

38. Perkins W, Malinin V, Li X, Miller B, Seidel D, Holzmann P, et al. System for treating pulmonary infections. US Patent No. 9566234 B2, 2017. https://patents.google.com/patent/US9566234B2/en

39. Gouda A, Sakr OS, Nasr M, Sammour OA. Ethanol injection technique for liposomes formulation: An insight into development, influencing factors, challenges and applications. J Drug Deliv Sci Technol. 2020;61:102174. https://doi.org/10.1016/j.jddst.2020.102174

40. Alving CR, Beck Z, Matyas GR, Rao M. Liposomal adjuvants for human vaccines. Expert Opin Drug Deliv. 2016;13(6):807–16. https://doi.org/10.1517/17425247.2016.1151871

41. Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci. 2015;10(2):81–98. https://doi.org/10.1016/j.ajps.2014.09.004

42. Ferrer JR, Sinegra AJ, Ivancic D, Yeap XY, Qiu L, Wang JJ, et al. Structure-dependent biodistribution of liposomal spherical nucleic acids. ACS Nano. 2020;14(2):1682–93. https://doi.org/10.1021/acsnano.9b07254

43. Nunes SS, Fernandes RS, Cavalcante CH, da Costa César I, Leite EA, Lopes SCA, et al. Influence of PEG coating on the biodistribution and tumor accumulation of pH-sensitive liposomes. Drug Deliv and Transl Res. 2019;9(1):123–30. https://doi.org/10.1007/s13346-018-0583-8

44. Carter KA, Shao S, Hoopes MI, Luo D, Ahsan B, Grigoryants VM, et al. Porphyrin-phospholipid liposomes permeabilized by near-infrared light. Nat Commun. 2014;5:3546. https://doi.org/10.1038/ncomms4546

45. Park SM, Kim MS, Park S-J, Park ES, Choi K-S, Kim Y-S, et al. Novel temperature-triggered liposome with high stability: formulation, in vitro evaluation, and in vivo study combined with high-intensity focused ultrasound (HIFU). J Control Release. 2014;170(3):373–9. https://doi.org/10.1016/j.jconrel.2013.06.003

46. Nasr G, Greige-Gerges H, Elaissari A, Khreich N. Liposomal membrane permeability assessment by fluorescence techniques: main permeabilizing agents, applications and challenges. Int J Pharm. 2020;580:119198. https://doi.org/10.1016/j.ijpharm.2020.119198

47. Nsairat H, Khater D, Sayed U, Odeh F, Bawab AA, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon. 2022;8(5):e09394. https://doi.org/10.1016/j.heliyon.2022.e09394

48. Quinn PJ. The effect of tocopherol on the structure and permeability of phosphatidylcholine liposomes. J Control Release. 2012;160(2):158–63. https://doi.org/10.1016/j.jconrel.2011.12.029

49. De Leo V, Milano F, Agostiano A, Catucci L. Recent advancements in polymer/liposome assembly for drug delivery: from surface modifications to hybrid vesicles. Polymers. 2021;13(7):1027. https://doi.org/10.3390/polym13071027

50. Lamichhane N, Udayakumar TS, D’Souza WD, Simone CB., Raghavan SR, Polf J, et al. Liposomes: clinical applications and potential for image-guided drug delivery. Molecules. 2018;23(2):288. https://doi.org/10.3390/molecules23020288

51. Tsermentseli SK, Kontogiannopoulos KN, Papageorgiou VP, Assimopoulou AN. Comparative study of PEGylated and conventional liposomes as carriers for shikonin. Fluids. 2018;3(2):36. https://doi.org/10.3390/fluids3020036

52. Torchilin V. PEGylated pharmaceutical nanocarriers. In: Wright J, Burgess D, eds. Long acting injections and implants. Advances in delivery science and technology. Boston, MA: Springer; 2012. P. 263–93. https://doi.org/10.1007/978-1-4614-0554-2_14

53. Caddeo C, Pucci L, Gabriele M, Carbone C, Fernàndez-Busquets X, Valenti D, et al. Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol. Int J Pharm. 2018;538(1–2):40–7. https://doi.org/10.1016/j.ijpharm.2017.12.047

54. Nosova AS, Koloskova OO, Nikonova AA, Simonova VA, Smirnov VV, Kudlay D, et al. Diversity of PEGylation methods of liposomes and their influence on RNA delivery. Medchemcomm. 2019;10(3):369–77. https://doi.org/10.1039/c8md00515j

55. Ilinskaya AN, Dobrovolskaia MA. Understanding the immunogenicity and antigenicity of nanomaterials: past, present and future. Toxicol Appl Pharmacol. 2016;299:70–7. https://doi.org/10.1016/j.taap.2016.01.005

56. Tretiakova DS, Khaidukov SV, Babayants AA, Frolova IS, Scheglovitova ON, Onishchenko NR, et al. Lipophilic prodrug of methotrexate in the membrane of liposomes promotes their uptake by human blood phagocytes. Acta Naturae. 2020;12(1):99–109 (In Russ.). https://doi.org/10.32607/actanaturae.10946

57. Kularatne RN, Crist RM, Stern ST. the future of tissue-targeted lipid nanoparticle-mediated nucleic acid delivery. Pharmaceuticals (Basel). 2022;15(7):897. https://doi.org/10.3390/ph15070897

58. Riaz MK, Riaz MA, Zhang X, LinC, Wong KH, Chen X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. Int J Mol Sci. 2018;19(1):195. https://doi.org/10.3390/ijms19010195

59. Gorbik VS, Shprakh ZS, Kozlova ZM, Salova VG. Liposomes as a targeted delivery system of drug (Review). Russian Journal of Biotherapy. 2021;20(1):33–41 (In Russ.). https://doi.org/10.17650/1726-9784-2021-20-1-33-41

60. Novikova AA, Kezimana P, Stanishevskiy YM. Methods of obtaining liposomes, used as drug delivery systems (Review). Drug Development and Registration. 2017;19(2):134–8 (In Russ.).

61. Lombardo D, Kiselev MA. Methods of liposomes preparation: formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics. 2022;14(3):543. https://doi.org/10.3390/pharmaceutics14030543

62. Sanarova EV, Lantsova AV, Nikolaeva LL, Orlova OL. Technolohical aspects of obtaining liposomal drug delivery systems. World J Pharm Pharm Sci. 2022;11(8):1979–2009.

63. Shvets VI, Kaplun AP, Krasnopol’skii YM, Stepanov AE, Chekhonin VP. From liposomes of the 1970s to 21st century nanobiotechnology. Nanotechnol Russia. 2008;3:643–55. https://doi.org/10.1134/S1995078008110013

64. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. https://doi.org/10.1186/1556-276X-8-102

65. Shaker S, Gardouh AR, Ghorab MM. Factors affecting liposomes particle size prepared by ethanol injection method. Res Pharm Sci. 2017;12(5):346–52. https://doi.org/10.4103/1735-5362.213979

66. Shi NQ, Qi XR. Preparation of drug liposomes by reverse-phase evaporation. In: Lu W, Qi XR, eds. Liposome-based drug delivery systems. Biomaterial engineering. Berlin: Springer; 2018. P. 1–10. https://doi.org/10.1007/978-3-662-49231-4_3-1

67. Lu B, Ma Q, Zhang J, Liu R, Yue Z, Xu C, et al. Preparation and characterization of bupivacaine multivesicular liposome: a QbD study about the effects of formulation and process on critical quality attributes. Int J Pharm. 2021;598:120335. https://doi.org/10.1016/j.ijpharm.2021.120335

68. Boban Z, Mardesic I, Subczynski WK, Raguz M. Giant unilamellar vesicle electroformation: what to use, what to avoid, and how to quantify the results. Membranes. 2021;11(11):860. https://doi.org/10.3390/membranes11110860

69. Maritim S, Boulas P, Lin Y. Comprehensive analysis of liposome formulation parameters and their influence on encapsulation, stability and drug release in glibenclamide liposomes. Int J Pharm. 2021;592:120051. https://doi.org/10.1016/j.ijpharm.2020.120051

70. Dmitrieva MV, Lugen B, Oborotova NA, Krasnyuk II, Krasnyuk II (Jr.), Belyatskaya AV, et al. Extrusion method in the technology preparation of liposomes. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2020(3):87–96 (In Russ.).

71. Ong SG, Chitneni M, Lee KS, Ming LC, Yuen KH. Evaluation of extrusion technique for nanosizing liposomes. Pharmaceutics. 2016;8(4):36. https://doi.org/10.3390/pharmaceutics8040036

72. Doskocz J, Dalek P, Przybylo M, Trzebicka B, Forys A, Kobyliukh A, et al. The elucidation of the molecular mechanism of the extrusion process. Materials. 2021;14(15):4278. https://doi.org/10.3390/ma14154278

73. Xiang B, Cao DY. Preparation of drug liposomes by thin-film hydration and homogenization. In: Lu WL, Qi XR, eds. Liposome-based drug delivery systems. Biomaterial engineering. Berlin: Springer; 2018. P. 1–11. https://doi.org/10.1007/978-3-662-49231-4_2-1

74. Preksha V, Patel JK, Patel MM. High-pressure homogenization techniques for nanoparticles. In: Patel JK, Pathak YV, eds. Emerging technologies for nanoparticle manufacturing. Cham: Springer; 2021. P. 263–86. https://doi.org/10.1007/978-3-030-50703-9_11

75. Roces CB, Lou G, Jain N, Abraham S, Thomas A, Halbert GW, et al. Manufacturing considerations for the development of lipid nanoparticles using microfluidics. Pharmaceutics. 2020;12(11):1095. https://doi.org/10.3390/pharmaceutics12111095

76. Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J Liposome Res. 2020;30(4):336–65. https://doi.org/10.1080/08982104.2019.1668010

77. Carugo D, Bottaro E, Owen J, Stride E, Nastruzzi C. Liposome production bymicrofluidics: potential andlimiting factors. Sci Rep. 2016;6:25876. https://doi.org/10.1038/srep25876

78. Zhang G, Sun J. Lipid in chips: a brief review of liposomes formation by microfluidics. Int J Nanomedicine. 2021;16:7391–16. https://doi.org/10.2147/IJN.S331639

79. Lin WS, Malmstadt N. Liposome production and concurrent loading of drug simulants by microfluidic hydrodynamic focusing. Eur Biophys J. 2019;48(6):549–58. https://doi.org/10.1007/s00249-019-01383-2

80. Garg S, Heuck G, Ip S, Ramsay E. Microfluidics: a transformational tool for nanomedicine development and production. J Drug Target. 2016;24(9):821–35. https://doi.org/10.1080/1061186X.2016.1198354

81. Capretto L, Carugo D, Mazzitelli S, Nastruzzi C, Zhang X. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Adv Drug Deliv Rev. 2013;65(11–12):1496–532. https://doi.org/10.1016/j.addr.2013.08.002

82. Balbino TA, Aoki NT, Gasperini AAM, Oliveira CLP, Azzoni AR, Cavalcanti LP, et al. Continuous flow production of cationic liposomes at high lipid concentration in microfluidic devices for gene delivery applications. Chem Eng J. 2013;226:423–33. https://doi.org/10.1016/j.cej.2013.04.053

83. Maeki M, Kimura N, Sato Y, Harashima H, Tokeshi M. Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems. Adv Drug Deliv Rev. 2018;128:84–100. https://doi.org/10.1016/j.addr.2018.03.008

84. Koki K, Toshihisa O, Shoji T. Formation of nano-sized lipid vesicles with asymmetric lipid components using a pulsed-jet flow method. Sens Actuators B Chem. 2021;327:128917. https://doi.org/10.1016/j.snb.2020.128917

85. Chiba M, Miyazaki M, Ishiwata S. Quantitative analysis of the lamellarity of giant liposomes prepared by the inverted emulsion method. Biophys J. 2014;107(2):346–54. https://doi.org/10.1016/j.bpj.2014.05.039

86. Sugiura S, Kuroiwa T, Kagota T, Nakajima M, Sato S, Mukataka S, et al. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device. Langmuir. 2008;24(9):4581–8. https://doi.org/10.1021/la703509r

87. Kuroiwa T, Fujita R, Kobayashi I, Uemura K, Nakajima M, Sato S, et al. Efficient preparation of giant vesicles as biomimetic compartment systems with high entrapment yields for biomacromolecules. Chem Biodivers. 2012;9(11):2453–72. https://doi.org/10.1002/cbdv.201200274

88. Ota S, Yoshizawa S, Takeuchi S. Microfluidic formation of monodisperse, cell-sized, and unilamellar vesicles. Angew Chem Int Ed. 2009;48(35):6533–7. https://doi.org/10.1002/anie.200902182

89. Zhigaltsev IV, Belliveau N, Hafez I, Leung AK, Huft J, Hansen C, et al. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir. 2012;28(7):3633–40. https://doi.org/10.1021/la204833h

90. Lou G, Anderluzzi G, Woods S, Roberts CW, Perrie Y. A novel microfluidic-based approach to formulate size-tuneable large unilamellar cationic liposomes: formulation, cellular uptake and biodistribution investigations. Eur J Pharm Biopharm. 2019;143:51–60. https://doi.org/10.1016/j.ejpb.2019.08.013

91. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–24. https://doi.org/10.1038/s41573-020-0090-8

92. Ma Z, Li B, Peng J, Gao D. Recent development of drug delivery systems through microfluidics: from synthesis to evaluation. Pharmaceutics. 2022;14(2):434. https://doi.org/10.3390/pharmaceutics14020434


Supplementary files

Review

For citations:


Burdaev N.I., Nikolaeva L.L., Kosenko V.V., Shprakh Z.S., Bunyatyan N.D. Liposomes as Drug Carriers: Classification, Preparation Methods, and Medicinal Use. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2023;13(2-1):316-332. (In Russ.) https://doi.org/10.30895/1991-2919-2023-508

Views: 4595


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-3062 (Print)
ISSN 3034-3453 (Online)