Липосомы как носители лекарственных средств: классификация, методы получения и применение
https://doi.org/10.30895/1991-2919-2023-508
Аннотация
Липосомы — одна из наиболее известных и перспективных наноразмерных систем доставки лекарственных средств. Липосомальные лекарственные средства успешно применяются в клинической практике для лечения сердечно-сосудистых, онкологических, дерматологических и ряда других заболеваний. Разработка и широкое внедрение липосом в клиническую практику являются актуальными задачами.
Цель работы: обобщение и анализ научных данных о структуре липосом, их составе, классификации, особенностях методов получения.
Приведена актуальная информация о коммерческих липосомальных лекарственных препаратах (ЛЛП). Показана взаимосвязь состава, структуры и способов получения липосом, важными характеристиками которых являются размер и ламеллярность, определяющие эффективность инкапсуляции лекарственного средства и его биораспределение. Выбор вспомогательных веществ проводится в зависимости от области применения липосомального препарата. Обобщены основные методы получения липосом, особенности их использования, преимущества и недостатки. Показано, что традиционные методы получения липосом просты в исполнении и не требуют использования сложного оборудования, основными недостатками традиционных методов являются низкая эффективность инкапсуляции лекарственных средств и сложность масштабирования технологических процессов. Особое внимание уделено микрофлюидным технологиям получения липосом, которые характеризуются высокой степенью контроля технологического процесса (распределения липосом по размерам и ламеллярности), высокой воспроизводимостью, возможностью масштабирования на уровень промышленного производства и могут использоваться для инкапсуляции лекарственных средств различной природы.
Ключевые слова
Об авторах
Н. И. БурдаевРоссия
Бурдаев Николай Игоревич
Петровский б-р, д. 8, стр. 2, Москва, 127051
Л. Л. Николаева
Россия
Николаева Людмила Леонидовна, канд. фарм. наук
Каширское ш., д. 24, Москва, 115522;
Трубецкая ул., д. 8, стр. 2, Москва, 119991
В. В. Косенко
Россия
Косенко Валентина Владимировна, канд. фарм. наук
Петровский б-р, д. 8, стр. 2, Москва, 127051
З. С. Шпрах
Россия
Шпрах Зоя Сергеевна, д-р фарм. наук
Каширское ш., д. 24, Москва, 115522;
Трубецкая ул., д. 8, стр. 2, Москва, 119991
Н. Д. Бунятян
Россия
Бунятян Наталья Дмитриевна, д-р фарм. наук, профессор
Петровский б-р, д. 8, стр. 2, Москва, 127051;
Трубецкая ул., д. 8, стр. 2, Москва, 119991
Список литературы
1. Gregoriadis G. Liposomes in drug delivery: how it all happened. Pharmaceutics. 2016;8(2):19. https://doi.org/10.3390/pharmaceutics8020019
2. Filipczak N, Pan J, Yalamarty SSK, Torchilin VP. Recent advancements in liposome technology. Adv Drug Deliver Rev. 2020;156:4–22. https://doi.org/10.1016/j.addr.2020.06.022
3. Sanarova E, Lantsova A, Oborotova N, Orlova O, Polozkova A, Dmitrieva M, Nikolaeva N. Liposome drug delivery. J Pharm Sci & Res. 2019;11(3):1148–55.
4. Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev. 2015;115(19):10938–66. https://doi.org/10.1021/acs.chemrev.5b00046
5. Almeida B, Nag OK, Rogers KE, Delehanty JB. Recent progress in bioconjugation strategies for liposome-mediated drug delivery. Molecules. 2020;25(23):5672. https://doi.org/10.3390/molecules25235672
6. Crommelin DJA, van Hoogevest P, Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what? J Control Release. 2020;318:256–63. https://doi.org/10.1016/j.jconrel.2019.12.023
7. Shan X, Gong X, Li J, Wen J, Li Y, Zhang Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm Sin B. 2022;12(7):3028–48. https://doi.org/10.1016/j.apsb.2022.02.025
8. Liu P, Chen G, Zhang J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules. 2022;27(4):1372. https://doi.org/10.3390/molecules27041372
9. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13(1):238–52. https://doi.org/10.1016/s0022-2836(65)80093-6
10. Gulati M, Bajad S, Singh S, Ferdous AJ, Singh M. Development of liposomal amphotericin B formulation. J Microencapsul. 1998;15(2):137–51. https://doi.org/10.3109/02652049809006844
11. Barenholz Y. Doxil® — the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34. https://doi.org/10.1016/j.jconrel.2012.03.020
12. Zhao M, Ding X, Shen J, Zhang X, Ding X, Xu B. Use of liposomal doxorubicin for adjuvant chemotherapy of breast cancer in clinical practice. J Zhejiang Univ Sci B. 2017;18(1):15–26. https://doi.org/10.1631/jzus.B1600303
13. Petre CE, Dittmer DP. Liposomal daunorubicin as treatment for Kaposi’s sarcoma. Int J Nanomedicine. 2007;2(3):277–88. PMID: 18019828
14. Taléns-Visconti R, Díez-Sales O, de Julián-Ortiz JV, Nácher A. Nanoliposomes in cancer therapy: marketed products and current clinical trials. Int J Mol Sci. 2022;23(8):4249. https://doi.org/10.3390/ijms23084249
15. Stone NR, Bicanic T, Salim R, Hope W. Liposomal amphotericin B (AmBisome(®)): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs. 2016;76(4):485–500. https://doi.org/10.1007/s40265-016-0538-7
16. Shirley M. Amikacin liposome inhalation suspension: a review in Mycobacterium avium complex lung disease. Drugs. 2019;79(5):555–62. https://doi.org/10.1007/s40265-019-01095-z
17. Wang N, Chen M, Wang T. Liposomes used as a vaccine adjuvant-delivery system: from basics to clinical immunization. J Control Release. 2019;303:130–50. https://doi.org/10.1016/j.jconrel.2019.04.025
18. Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2):12. https://doi.org/10.3390/pharmaceutics9020012
19. Andra VVSNL, Pammi SVN, Bhatraju LVKP, Ruddaraju LK. A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents. Bionanoscience. 2022;12(1):274–91. https://doi.org/10.1007/s12668-022-00941-x
20. Ilfeld BM, Eisenach JC, Gabriel RA. Clinical effectiveness of liposomal bupivacaine administered by infiltration or peripheral nerve block to treat postoperative pain. Anesthesiology. 2021;134(2):283–344. https://doi.org/10.1097/ALN.0000000000003630
21. Ren H, He Y, Liang J, Cheng Z, Zhang M, Zhu Y, et al. Role of liposome size, surface charge, and PEGylation on rheumatoid arthritis targeting therapy. ACS Appl Mater Interfaces. 2019;11(22):20304–15. https://doi.org/10.1021/acsami.8b22693
22. Tretiakova DS, Vodovozova EL. Liposomes as adjuvants and vaccine delivery systems. Biochem (Mosc) Suppl Ser A Membr Cell Biol. 2022;16(1):1–20. https://doi.org/10.1134/S1990747822020076
23. Mukhamadiyarov RA, Senokosova EA, Krutitsky SS, Voevoda DV, Pyshnaya IA, Ivanov VV, et al. Size-dependent ability of liposomes to accumulate in the ischemic myocardium and protect the heart. J Cardiovasc Pharm. 2018;72(3):143–52. https://doi.org/10.1097/FJC.0000000000000606
24. Zhang H. Thin-film hydration followed by extrusion method for liposome preparation. Methods Mol Biol. 2017;1522:17–22. https://doi.org/10.1007/978-1-4939-6591-5_2
25. Salehi B, Mishra AP, Nigam M, Kobarfard F, Javed Z, Rajabi S, et al. Multivesicular liposome (depofoam) in human diseases. Iran J Pharm Res. 2020;19(2):9–21. https://doi.org/10.22037/ijpr.2020.112291.13663
26. Salehi B, Selamoglu ZS, Mileski K, Pezzani R, Redaelli M, Cho WC, et al. Liposomal cytarabine as cancer therapy: from chemistry to medicine. Biomolecules. 2019;9(12):773. https://doi.org/10.3390/biom9120773
27. Chaurasiya A, Gorajiya A, Panchal K, Katke S, Singh AK. A review on multivesicular liposomes for pharmaceutical applications: preparation, characterization, and translational challenges. Drug Deliv Transl Res. 2022;12(7):1569–87. https://doi.org/10.1007/s13346-021-01060-y
28. Angst MS, Drover DR. Pharmacology of drugs formulated with DepoFoam™. Clin Pharmacokinet. 2006;45(12):1153–76. https://doi.org/10.2165/00003088-200645120-00002
29. Ibrahim M, Abuwatfa WH, Awad NS, Sabouni R, Husseini GA. Encapsulation, release, and cytotoxicity of doxorubicin loaded in liposomes, micelles, and metal-organic frameworks: a review. Pharmaceutics. 2022;14(2):254. https://doi.org/10.3390/pharmaceutics14020254
30. Beiranvand S, Eatemadi A, Karimi A. New updates pertaining to drug delivery of local anesthetics in particular bupivacaine using lipid nanoparticles. Nanoscale Res Lett. 2016;11(1):307–17. https://doi.org/10.1186/s11671-016-1520-8
31. Silverman JA, Deitcher SR. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol. 2013;71(3):555–64. https://doi.org/10.1007/s00280-012-2042-4
32. Venkatakrishnan K, Liu Y, Noe D, Mertz J, Bargfrede M, Marbury T, et al. Pharmacokinetics and pharmacodynamics of liposomal mifamurtide in adult volunteers with mild or moderate hepatic impairment. Br J Clin Pharmacol. 2014;77(6):998–1010. https://doi.org/10.1111/bcp.12261
33. Swenson CE, Perkins WR, Roberts P, Janoff AS. Liposome technology and the development of Myocet™ (liposomal doxorubicin citrate). Breast. 2001;10:1–7. https://doi.org/10.1016/S0960-9776(01)80001-1
34. Skupin-Mrugalska P, Piskorz J, Goslinski T, Mielcarek J, Konopka K, Düzgüneş N. Current status of liposomal porphyrinoid photosensitizers. Drug Discov Today. 2013;18(15–16):776–84. https://doi.org/10.1016/j.drudis.2013.04.003
35. Milano G, Innocenti F, Minami H. Liposomal irinotecan (Onivyde): exemplifying the benefits of nanotherapeutic drugs. Cancer Sci. 2022;113(7):2224–31. https://doi.org/10.1111/cas.15377
36. Dicko A, Kwak S, Frazier AA, Mayer LD, Liboiron BD. Biophysical characterization of a liposomal formulation of cytarabine and daunorubicin. Int J Pharm. 2010;391(1–2):248–59. https://doi.org/10.1016/j.ijpharm.2010.02.014
37. Li Z, Perkins W, Cipolla D. Robustness of aerosol delivery of amikacin liposome inhalation suspension using the eFlow® Technology. Eur J Pharm Biopharm. 2021;166:10–8. https://doi.org/10.1016/j.ejpb.2021.05.021
38. Perkins W, Malinin V, Li X, Miller B, Seidel D, Holzmann P, et al. System for treating pulmonary infections. US Patent No. 9566234 B2, 2017. https://patents.google.com/patent/US9566234B2/en
39. Gouda A, Sakr OS, Nasr M, Sammour OA. Ethanol injection technique for liposomes formulation: An insight into development, influencing factors, challenges and applications. J Drug Deliv Sci Technol. 2020;61:102174. https://doi.org/10.1016/j.jddst.2020.102174
40. Alving CR, Beck Z, Matyas GR, Rao M. Liposomal adjuvants for human vaccines. Expert Opin Drug Deliv. 2016;13(6):807–16. https://doi.org/10.1517/17425247.2016.1151871
41. Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci. 2015;10(2):81–98. https://doi.org/10.1016/j.ajps.2014.09.004
42. Ferrer JR, Sinegra AJ, Ivancic D, Yeap XY, Qiu L, Wang JJ, et al. Structure-dependent biodistribution of liposomal spherical nucleic acids. ACS Nano. 2020;14(2):1682–93. https://doi.org/10.1021/acsnano.9b07254
43. Nunes SS, Fernandes RS, Cavalcante CH, da Costa César I, Leite EA, Lopes SCA, et al. Influence of PEG coating on the biodistribution and tumor accumulation of pH-sensitive liposomes. Drug Deliv and Transl Res. 2019;9(1):123–30. https://doi.org/10.1007/s13346-018-0583-8
44. Carter KA, Shao S, Hoopes MI, Luo D, Ahsan B, Grigoryants VM, et al. Porphyrin-phospholipid liposomes permeabilized by near-infrared light. Nat Commun. 2014;5:3546. https://doi.org/10.1038/ncomms4546
45. Park SM, Kim MS, Park S-J, Park ES, Choi K-S, Kim Y-S, et al. Novel temperature-triggered liposome with high stability: formulation, in vitro evaluation, and in vivo study combined with high-intensity focused ultrasound (HIFU). J Control Release. 2014;170(3):373–9. https://doi.org/10.1016/j.jconrel.2013.06.003
46. Nasr G, Greige-Gerges H, Elaissari A, Khreich N. Liposomal membrane permeability assessment by fluorescence techniques: main permeabilizing agents, applications and challenges. Int J Pharm. 2020;580:119198. https://doi.org/10.1016/j.ijpharm.2020.119198
47. Nsairat H, Khater D, Sayed U, Odeh F, Bawab AA, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon. 2022;8(5):e09394. https://doi.org/10.1016/j.heliyon.2022.e09394
48. Quinn PJ. The effect of tocopherol on the structure and permeability of phosphatidylcholine liposomes. J Control Release. 2012;160(2):158–63. https://doi.org/10.1016/j.jconrel.2011.12.029
49. De Leo V, Milano F, Agostiano A, Catucci L. Recent advancements in polymer/liposome assembly for drug delivery: from surface modifications to hybrid vesicles. Polymers. 2021;13(7):1027. https://doi.org/10.3390/polym13071027
50. Lamichhane N, Udayakumar TS, D’Souza WD, Simone CB., Raghavan SR, Polf J, et al. Liposomes: clinical applications and potential for image-guided drug delivery. Molecules. 2018;23(2):288. https://doi.org/10.3390/molecules23020288
51. Tsermentseli SK, Kontogiannopoulos KN, Papageorgiou VP, Assimopoulou AN. Comparative study of PEGylated and conventional liposomes as carriers for shikonin. Fluids. 2018;3(2):36. https://doi.org/10.3390/fluids3020036
52. Torchilin V. PEGylated pharmaceutical nanocarriers. In: Wright J, Burgess D, eds. Long acting injections and implants. Advances in delivery science and technology. Boston, MA: Springer; 2012. P. 263–93. https://doi.org/10.1007/978-1-4614-0554-2_14
53. Caddeo C, Pucci L, Gabriele M, Carbone C, Fernàndez-Busquets X, Valenti D, et al. Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol. Int J Pharm. 2018;538(1–2):40–7. https://doi.org/10.1016/j.ijpharm.2017.12.047
54. Nosova AS, Koloskova OO, Nikonova AA, Simonova VA, Smirnov VV, Kudlay D, et al. Diversity of PEGylation methods of liposomes and their influence on RNA delivery. Medchemcomm. 2019;10(3):369–77. https://doi.org/10.1039/c8md00515j
55. Ilinskaya AN, Dobrovolskaia MA. Understanding the immunogenicity and antigenicity of nanomaterials: past, present and future. Toxicol Appl Pharmacol. 2016;299:70–7. https://doi.org/10.1016/j.taap.2016.01.005
56. Третьякова ДС, Хайдуков CВ, Бабаянц АА, Фролова ИС, Щегловитова ОН, Онищенко НР и др. Липофильное пролекарство метотрексата в мембране липосом усиливает их фагоцитоз в крови человека. Acta Naturae. 2020;12(1):99–109. https://doi.org/10.32607/actanaturae.10946
57. Kularatne RN, Crist RM, Stern ST. the future of tissue-targeted lipid nanoparticle-mediated nucleic acid delivery. Pharmaceuticals (Basel). 2022;15(7):897. https://doi.org/10.3390/ph15070897
58. Riaz MK, Riaz MA, Zhang X, LinC, Wong KH, Chen X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. Int J Mol Sci. 2018;19(1):195. https://doi.org/10.3390/ijms19010195
59. Горбик ВС, Шпрах ЗС, Козлова ЖМ, Салова ВГ. Липосомы как система таргетной доставки лекарственных средств (обзор). Российский биотерапевтический журнал. 2021;20(1):33–41. https://doi.org/10.17650/1726-9784-2021-20-1-33-41
60. Новикова АА, Кезимана П, Станишевский ЯМ. Методы получения липосом, используемых в качества носителей лекарственных средств (обзор). Разработка и регистрация лекарственных средств. 2017;19(2):134–8.
61. Lombardo D, Kiselev MA. Methods of liposomes preparation: formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics. 2022;14(3):543. https://doi.org/10.3390/pharmaceutics14030543
62. Sanarova EV, Lantsova AV, Nikolaeva LL, Orlova OL. Technolohical aspects of obtaining liposomal drug delivery systems. World J Pharm Pharm Sci. 2022;11(8):1979–2009.
63. Shvets VI, Kaplun AP, Krasnopol’skii YM, Stepanov AE, Chekhonin VP. From liposomes of the 1970s to 21st century nanobiotechnology. Nanotechnol Russia. 2008;3:643–55. https://doi.org/10.1134/S1995078008110013
64. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. https://doi.org/10.1186/1556-276X-8-102
65. Shaker S, Gardouh AR, Ghorab MM. Factors affecting liposomes particle size prepared by ethanol injection method. Res Pharm Sci. 2017;12(5):346–52. https://doi.org/10.4103/1735-5362.213979
66. Shi NQ, Qi XR. Preparation of drug liposomes by reverse-phase evaporation. In: Lu W, Qi XR, eds. Liposome-based drug delivery systems. Biomaterial engineering. Berlin: Springer; 2018. P. 1–10. https://doi.org/10.1007/978-3-662-49231-4_3-1
67. Lu B, Ma Q, Zhang J, Liu R, Yue Z, Xu C, et al. Preparation and characterization of bupivacaine multivesicular liposome: a QbD study about the effects of formulation and process on critical quality attributes. Int J Pharm. 2021;598:120335. https://doi.org/10.1016/j.ijpharm.2021.120335
68. Boban Z, Mardesic I, Subczynski WK, Raguz M. Giant unilamellar vesicle electroformation: what to use, what to avoid, and how to quantify the results. Membranes. 2021;11(11):860. https://doi.org/10.3390/membranes11110860
69. Maritim S, Boulas P, Lin Y. Comprehensive analysis of liposome formulation parameters and their influence on encapsulation, stability and drug release in glibenclamide liposomes. Int J Pharm. 2021;592:120051. https://doi.org/10.1016/j.ijpharm.2020.120051
70. Дмитриева МВ, Лугэнь Б, Оборотова НА, Краснюк ИИ, Краснюк ИИ (мл.), Беляцкая АВ и др. Метод экструзии в технологии получения липосом. Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. 2020;(3):87–96.
71. Ong SG, Chitneni M, Lee KS, Ming LC, Yuen KH. Evaluation of extrusion technique for nanosizing liposomes. Pharmaceutics. 2016;8(4):36. https://doi.org/10.3390/pharmaceutics8040036
72. Doskocz J, Dalek P, Przybylo M, Trzebicka B, Forys A, Kobyliukh A, et al. The elucidation of the molecular mechanism of the extrusion process. Materials. 2021;14(15):4278. https://doi.org/10.3390/ma14154278
73. Xiang B, Cao DY. Preparation of drug liposomes by thin-film hydration and homogenization. In: Lu WL, Qi XR, eds. Liposome-based drug delivery systems. Biomaterial engineering. Berlin: Springer; 2018. P. 1–11. https://doi.org/10.1007/978-3-662-49231-4_2-1
74. Preksha V, Patel JK, Patel MM. High-pressure homogenization techniques for nanoparticles. In: Patel JK, Pathak YV, eds. Emerging technologies for nanoparticle manufacturing. Cham: Springer; 2021. P. 263–86. https://doi.org/10.1007/978-3-030-50703-9_11
75. Roces CB, Lou G, Jain N, Abraham S, Thomas A, Halbert GW, et al. Manufacturing considerations for the development of lipid nanoparticles using microfluidics. Pharmaceutics. 2020;12(11):1095. https://doi.org/10.3390/pharmaceutics12111095
76. Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J Liposome Res. 2020;30(4):336–65. https://doi.org/10.1080/08982104.2019.1668010
77. Carugo D, Bottaro E, Owen J, Stride E, Nastruzzi C. Liposome production bymicrofluidics: potential andlimiting factors. Sci Rep. 2016;6:25876. https://doi.org/10.1038/srep25876
78. Zhang G, Sun J. Lipid in chips: a brief review of liposomes formation by microfluidics. Int J Nanomedicine. 2021;16:7391–16. https://doi.org/10.2147/IJN.S331639
79. Lin WS, Malmstadt N. Liposome production and concurrent loading of drug simulants by microfluidic hydrodynamic focusing. Eur Biophys J. 2019;48(6):549–58. https://doi.org/10.1007/s00249-019-01383-2
80. Garg S, Heuck G, Ip S, Ramsay E. Microfluidics: a transformational tool for nanomedicine development and production. J Drug Target. 2016;24(9):821–35. https://doi.org/10.1080/1061186X.2016.1198354
81. Capretto L, Carugo D, Mazzitelli S, Nastruzzi C, Zhang X. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Adv Drug Deliv Rev. 2013;65(11–12):1496–532. https://doi.org/10.1016/j.addr.2013.08.002
82. Balbino TA, Aoki NT, Gasperini AAM, Oliveira CLP, Azzoni AR, Cavalcanti LP, et al. Continuous flow production of cationic liposomes at high lipid concentration in microfluidic devices for gene delivery applications. Chem Eng J. 2013;226:423–33. https://doi.org/10.1016/j.cej.2013.04.053
83. Maeki M, Kimura N, Sato Y, Harashima H, Tokeshi M. Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems. Adv Drug Deliv Rev. 2018;128:84–100. https://doi.org/10.1016/j.addr.2018.03.008
84. Koki K, Toshihisa O, Shoji T. Formation of nano-sized lipid vesicles with asymmetric lipid components using a pulsed-jet flow method. Sens Actuators B Chem. 2021;327:128917. https://doi.org/10.1016/j.snb.2020.128917
85. Chiba M, Miyazaki M, Ishiwata S. Quantitative analysis of the lamellarity of giant liposomes prepared by the inverted emulsion method. Biophys J. 2014;107(2):346–54. https://doi.org/10.1016/j.bpj.2014.05.039
86. Sugiura S, Kuroiwa T, Kagota T, Nakajima M, Sato S, Mukataka S, et al. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device. Langmuir. 2008;24(9):4581–8. https://doi.org/10.1021/la703509r
87. Kuroiwa T, Fujita R, Kobayashi I, Uemura K, Nakajima M, Sato S, et al. Efficient preparation of giant vesicles as biomimetic compartment systems with high entrapment yields for biomacromolecules. Chem Biodivers. 2012;9(11):2453–72. https://doi.org/10.1002/cbdv.201200274
88. Ota S, Yoshizawa S, Takeuchi S. Microfluidic formation of monodisperse, cell-sized, and unilamellar vesicles. Angew Chem Int Ed. 2009;48(35):6533–7. https://doi.org/10.1002/anie.200902182
89. Zhigaltsev IV, Belliveau N, Hafez I, Leung AK, Huft J, Hansen C, et al. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir. 2012;28(7):3633–40. https://doi.org/10.1021/la204833h
90. Lou G, Anderluzzi G, Woods S, Roberts CW, Perrie Y. A novel microfluidic-based approach to formulate size-tuneable large unilamellar cationic liposomes: formulation, cellular uptake and biodistribution investigations. Eur J Pharm Biopharm. 2019;143:51–60. https://doi.org/10.1016/j.ejpb.2019.08.013
91. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–24. https://doi.org/10.1038/s41573-020-0090-8
92. Ma Z, Li B, Peng J, Gao D. Recent development of drug delivery systems through microfluidics: from synthesis to evaluation. Pharmaceutics. 2022;14(2):434. https://doi.org/10.3390/pharmaceutics14020434
Дополнительные файлы
Рецензия
Для цитирования:
Бурдаев Н.И., Николаева Л.Л., Косенко В.В., Шпрах З.С., Бунятян Н.Д. Липосомы как носители лекарственных средств: классификация, методы получения и применение. Ведомости Научного центра экспертизы средств медицинского применения. Регуляторные исследования и экспертиза лекарственных средств. 2023;13(2-1):316-332. https://doi.org/10.30895/1991-2919-2023-508
For citation:
Burdaev N.I., Nikolaeva L.L., Kosenko V.V., Shprakh Z.S., Bunyatyan N.D. Liposomes as Drug Carriers: Classification, Preparation Methods, and Medicinal Use. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2023;13(2-1):316-332. https://doi.org/10.30895/1991-2919-2023-508