Preview

Regulatory Research and Medicine Evaluation

Advanced search

Radioactivity distribution in the blood and urine of patients receiving systemic therapy with a 177Lu radiopharmaceutical and local (intra-articular) therapy with a 188Re radiopharmaceutical

https://doi.org/10.30895/1991-2919-2022-12-4-404-414

Abstract

Pharmacokinetic parameters are important for calculating the absorbed dose; they also provide an indirect measure of the in vivo stability of a radiopharmaceutical. The aim of the study was to determine the excretion rate of the activity of 177Lu-DOTA-PSMA-617 and MCA 5–10 microns, 188Re, from the blood and urine of patients undergoing systemic and local radiotherapy in clinical trials. Materials and methods: the study involved radiometry of blood and urine samples of 12 male patients with metastatic prostate cancer and 20 patients of both sexes with chronic synovitis, selected after radiotherapy with the experimental radiopharmaceuticals 177Lu-DOTA-PSMA-617 and MCA 5–10 microns, 188Re, respectively. The activity of the samples was measured using a dose calibrator and a gamma counter. Results: the activity of 177Lu in the blood of patients was 36.0–89.3%, 10.4–55.7%, 14.6–32.8%, 10.6–35.7%, and 7.3–25.1% at 5 minutes and at 1, 3, 6 and 8 hours after the administration of 177Lu-DOTA-PSMA-617, respectively. The 48-hour urine excretion varied within 34.4–88.8% for 177Lu-DOTA-PSMA-617 and within 0.15–2.91% for MCA 5–10 microns, 188Re. Conclusions: the maximum values of 177Lu-DOTA-PSMA-617 activity in the blood 8 hours after administration (9.6–25.1%) corresponded to the maximum injected activity of the radiopharmaceutical product. The low rate of 188Re urinary excretion after intra-articular administration of MCA 5–10 microns, 188Re, is an indirect indication of the quality of the radiopharmaceutical. The obtained pharmacokinetic parameters show high in vivo stability of the 177Lu and 188Re medicinal products. The results obtained will be used to calculate absorbed doses in patients.

About the Authors

E. D. Stepchenkova
A. Tsyb Medical Radiological Research Centre of the National Medical Research Radiological Centre
Russian Federation

Ekaterina D. Stepchenkova.

249036, Obninsk, Korolev St., 4



V. K. Tishchenko
A. Tsyb Medical Radiological Research Centre of the National Medical Research Radiological Centre
Russian Federation

Viktoriya K. Tishchenko, Dr. Sci. (Biol.).

249036, Obninsk, Korolev St., 4



O. P. Vlasova
A. Tsyb Medical Radiological Research Centre of the National Medical Research Radiological Centre; National Medical Research Radiological Centre
Russian Federation

Oksana P. Vlasova, Cand. Sci. (Biol.).

249036, Obninsk, Korolev St., 4



V. M. Petriev
A. Tsyb Medical Radiological Research Centre of the National Medical Research Radiological Centre; National Research Nuclear University (MEPhI)
Russian Federation

Vasily M. Petriev, Dr. Sci. (Biol.).

249036, Obninsk, Korolev St., 4
115409, Moscow, Kashirskoe Hwy, 31



N. S. Legkodimova
A. Tsyb Medical Radiological Research Centre of the National Medical Research Radiological Centre
Russian Federation

Nadezhda S. Legkodimova.

249036, Obninsk, Korolev St., 4



V. V. Krylov
A. Tsyb Medical Radiological Research Centre of the National Medical Research Radiological Centre
Russian Federation

Valeriy V. Krylov, Dr. Sci. (Med.).

249036, Obninsk, Korolev St., 4



A. V. Fedorova
A. Tsyb Medical Radiological Research Centre of the National Medical Research Radiological Centre
Russian Federation

Alyona V. Fedorova.

249036, Obninsk, Korolev St., 4



E. A. Kuzenkova
A. Tsyb Medical Radiological Research Centre of the National Medical Research Radiological Centre
Russian Federation

Ekaterina A. Kuzenkova.

249036, Obninsk, Korolev St., 4



A. A. Ostroukhoff
A. Tsyb Medical Radiological Research Centre of the National Medical Research Radiological Centre
Russian Federation

Alexander A. Ostroukhoff.

249036, Obninsk, Korolev St., 4



P. V. Shegai
A. Tsyb Medical Radiological Research Centre of the National Medical Research Radiological Centre; National Medical Research Radiological Centre
Russian Federation

Petr V. Shegai, Cand. Sci. (Med.).

249036, Obninsk, Korolev St., 4
115409, Moscow, Kashirskoe Hwy, 31



References

1. Bernheim S. Radiumtherapy in tuberculosis and dioradin (radio-active mentholated iodine) as used in the treatment of tuberculosis. Vail-Ballou Co; 1911.

2. Knox R. Radiography and radio-therapeutics. London: A.&C. Black; 1917.

3. Gordon B. Radium in the treatment of lymphangioma of the tongue. Radium Quarterly. 1917;1(1):13–5.

4. Knapp FF, Dash A. Radiopharmaceuticals for therapy. Springer (India); 2016. https://doi.org/10.1007/978-81-322-2607-9

5. Mittra E, Bodei L. Landscape analysis of phase 2 and 3 clinical trials for targeted radionuclide therapy. J Nucl Med. 2021;62(8):1031–2. https://doi.org/10.2967/jnumed.120.258103

6. Liepe K, Lymouris L, Krylov VV, Kochetova TYu. Nuclear therapy with <sup>188</sup>Re based radiopharmaceuticals in oncology. Onkologicheskiy zhurnal: luchevaya diagnostika, luchevaya terapiya = Journal of Oncology: Diagnostic Radiology and Radiotherapy. 2018;1(4):34–42 (In Russ.)

7. Zyryanov SK, Zatolochina KE. Perspective for use of the radionuclide drugs in the treatment of malignant tumors in Russia. Kachestvennaya klinicheskaya praktika = Good Clinical Practice. 2018;(2):51–7 (In Russ.) https://doi.org/10.24411/2588-0519-2018-10044

8. Zverev AV, Krylov VV, Khanov AG, Kochetova TYu. Radiosynovectomy — a method of inflammatory joints diseases treatment with the use of isotopes. Russkiy meditsinskiy zhurnal = Russian Medical Journal. 2017;(1):36–41 (In Russ.)

9. Krylov VV, Petriev VM, Kochetova TYu, Shurinov AYu. The first experience in Russia of using the domestic drug <sup>177</sup>Lu-DOTA-PSMA in metastatic castration-resistant prostate cancer. Materials of the V International scientific and practical conference «Radiopharma-2021». P. 50–1 (In Russ.)

10. Vlasova OP, Stepchenkova ED, Petriev VM, Klementyeva OE, Stepchenkov DV, Krasnoperova AS. The preclinical test’s results of the efficiency of the radiopharmaceutical preparation “DTPA-microspheres of albumin, 90 Y”. Meditsinskaya radiologiya i radiatsionnaya bezopasnost = Medical Radiology and Radiation Safety. 2020;65(5):60–7 (In Russ.) https://doi.org/10.12737/1024-6177-2020-65-5-60-67

11. Hall JE. Guyton and Hall textbook of medical physiology. Moscow: Logosfera; 2018 (In Russ.)

12. Miyahira AK, Soule HR. The history of prostate-specific membrane antigen as a theranostic target in prostate cancer: the cornerstone role of the Prostate Cancer Foundation. J Nucl Med. 2022;63(3):331–8. https://doi.org/10.2967/jnumed.121.262997

13. Czerwinska M, Bilewicz A, Kruszewski M, Wegierek-Ciuk A, Lankoff A. Targeted radionuclide therapy of prostate cancer — from basic research to clinical perspectives. Molecules. 2020;25(7):1743. https://doi.org/10.3390/molecules25071743

14. Kratochwil C, Fendler WP, Eiber M, Baum R, Bozkurt MF, Czernin J. EANM procedure guidelines for radionuclide therapy with <sup>177</sup>Lu-labelled PSMA-ligands (<sup>177</sup>Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging. 2019;46(12):2536–44. https://doi.org/10.1007/s00259-019-04485-3

15. Tishchenko VK, Petriev VM, Matveev AV, Fedorova AV, Kuzenkova KA. Biodistribution of osteotropic <sup>177</sup>Lu-EDTMP — a potential radiopharmaceutical for radionuclide therapy of bone metastases. Pharm Chem J. 2022;56:883–8 https://doi.org/10.1007/s11094-022-02744-6

16. Petriev VM, Tishchenko VK, Mikhaylovskaya AA, Konoplyannikov AG. Pharmacokinetics of Re-188-nanodiamonds complex in mice bearing experimental Ehrlich carcinoma. Radiatsiya i risk = Radiation and Risk. 2017;26(2):62–71 (In Russ.) https://doi.org/10.21870/0131-3878-2017-26-2-62-71

17. Postovalova AS, Karpov TE, Akhmetova DR, Rodimova SA, Kuznetsova DS, Antuganov DO. Preclinical studies of automated radiolabeled microcarriers for radiosynovectomy of inflammatory joint disease. Appl Mater Today. 2022;29:101571. https://doi.org/10.1016/j.apmt.2022.101571

18. Lepareur N, Lacœuille F, Bouvry C, Hindré F, Garcion E, Cherel M, et al. Rhenium-188 labeled radiopharmaceuticals: current clinical applications in oncology and promising perspectives. Front Med (Lausanne). 2019;6:132. https://doi.org/10.3389/fmed.2019.00132

19. Kodina GE, Malysheva AO, Klementyeva OЕ, Taratonenkova NA, Lyamtseva EA, Zhukova MV, Krasnoperova AS. «Synoren, <sup>188</sup>Re” — a promising radiopharmaceutical for radiosynovectomy. Radiatsiya i risk = Radiation and Risk. 2018;27(4):76–86 (In Russ.) https://doi.org/10.21870/0131-3878-2018-27-4-76-86


Supplementary files

Review

For citations:


Stepchenkova E.D., Tishchenko V.K., Vlasova O.P., Petriev V.M., Legkodimova N.S., Krylov V.V., Fedorova A.V., Kuzenkova E.A., Ostroukhoff A.A., Shegai P.V. Radioactivity distribution in the blood and urine of patients receiving systemic therapy with a 177Lu radiopharmaceutical and local (intra-articular) therapy with a 188Re radiopharmaceutical. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2022;12(4):404-414. (In Russ.) https://doi.org/10.30895/1991-2919-2022-12-4-404-414

Views: 688


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-3062 (Print)
ISSN 3034-3453 (Online)