Development of Medicinal Products Based on Gene-Editing Technology: Regulatory Practices
https://doi.org/10.30895/1991-2919-2023-481
Abstract
Somatic cell genome-editing systems are the most recent gene therapy technology to treat patients with monogenic hereditary cancer or HIV. Gene editing allows for changing or completely removing a defective gene with regularly interspaced short palindromic repeat (CRISPR), zinc-finger nuclease (ZFN), and transcription activator-like effector nuclease (TALEN) systems.
The aim of the study was to analyse the existing international experience and regulatory requirements relating to the development of medicinal products based on genome editing of postnatal somatic cells.
This article describes the mechanism of action of CRISPR, ZFN, and TALEN systems and compares their advantages and disadvantages. Regulatory and legislative authorities should take a special approach to the development, manufacture, and assessment of medicinal products based on genome editing, as well as to the ethical aspects of their use. Current requirements and recommendations for the development of medicinal products based on genome editing are mostly limited to the need to evaluate the risks of off-target effects and late-onset adverse events and the possibility to adapt clinical trial design to surrogate endpoints, exclude healthy volunteers and comparison groups, and select initial doses for clinical trials based on scientific data. Thus, a regulatory approach should also be developed for the marketing authorisation of medicinal products based on genome-editing systems.
Keywords
About the Authors
N. S. PokrovskyRussian Federation
Nikita S. Pokrovsky
8/2 Petrovsky Blvd, Moscow 127051
M. A. Vodyakova
Russian Federation
Marina A. Vodyakova
8/2 Petrovsky Blvd, Moscow 127051
E. V. Melnikova
Russian Federation
Ekaterina V. Melnikova, Cand. Sci. (Biol.)
8/2 Petrovsky Blvd, Moscow 127051
V. A. Merkulov
Russian Federation
Vadim A. Merkulov, Dr. Sci. (Med.), Professor
8/2 Petrovsky Blvd, Moscow 127051;
8/2 Trubetskaya St., Moscow 119991
References
1. Rees HA, Minella AC, Burnett CA, Komor AC, Gaudelli NM. CRISPR-derived genome editing therapies: progress from bench to bedside. Mol Ther. 2021;29(11):3125–39. https://doi.org/10.1016/j.ymthe.2021.09.027
2. Howard HC, van El CG, Forzano F, Radojkovic D, Rial-Seb bag E, de Wert G, et al. One small edit for humans, one giant edit for humankind? Points and questions to consider for a responsible way forward for gene editing in humans. Eur J Hum Genet. 2018;26(1):1–11. https://doi.org/10.1038/s41431-017-0024-z
3. Reardon S. Leukaemia success heralds wave of gene-editing therapies. Nature. 2015;527(7577):146–7. https://doi.org/10.1038/nature.2015.18737
4. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370(10):901–10. https://doi.org/10.1056/NEJMoa1300662
5. Orkin SH, Bauer DE. Emerging genetic therapy for sickle cell disease. Annu Rev Med. 2019;70:257–71. https://doi.org/10.1146/annurev-med-041817-125507
6. Ledford H. CRISPR treatment inserted directly into the body for first time. Nature. 2020;579(7798):185. https://doi.org/10.1038/d41586-020-00655-8
7. Sather BD, Romano Ibarra GS, Sommer K, Curinga G, Hale M, Khan IF, et al. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci Transl Med. 2015;7(307):307ra156. https://doi.org/10.1126/scitranslmed.aac5530
8. Urnov FD. Imagine CRISPR cures. Mol Ther. 2021;29(11):3103–6. https://doi.org/10.1016/j.ymthe.2021.10.019
9. Cyranoski D. The CRISPR-baby scandal: what’s next for human gene-editing. Nature. 2019;566(7745):440–2. https://doi.org/10.1038/d41586-019-00673-1
10. Jessen H, Allen TM, Streeck H. How a single patient influenced HIV research — 15-year follow-up. New Engl J Med. 2014;370(7):682–3. https://doi.org/10.1056/NEJMc1308413
11. Lederman MM, Penn-Nicholson A, Cho M, Mosier D. Biology of CCR5 and its role in HIV infection and treatment. JAMA. 2006;296(7):815–26. https://doi.org/10.1001/jama.296.7.815
12. Goryaev AA, Savkina MV, Mefed KM, Bondarev VP, Merkulov VA, Tarasov VV. Genome-editing and biomedical cell products: current state, safety and efficacy. BIOpreparations. Prevention, Diagnosis, Treatment. 2018;18(3):140–9 (In Russ.). https://doi.org/10.30895/2221-996X-2018-18-3-140-149
13. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. https://doi.org/10.1126/science.1258096
14. Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013;14(1):49–55. https://doi.org/10.1038/nrm3486
15. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11(9):636–46. https://doi.org/10.1038/nrg2842
16. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21. https://doi.org/10.1126/science.1225829
17. Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA. 1996;93(3):1156–60. https://doi.org/10.1073/pnas.93.3.1156
18. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186(2):757–61. https://doi.org/10.1534/genetics.110.120717
19. Khan SH. Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol Ther Nucleic Acids. 2019;16:326–34. https://doi.org/10.1016/j.omtn.2019.02.027
20. Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020;578(7794):229–36. https://doi.org/10.1038/s41586-020-1978-5
21. Min YL, Bassel-Duby R, Olson EN. CRISPR correction of Duchenne muscular dystrophy. Annu Rev Med. 2019;70:239–55. https://doi.org/10.1146/annurev-med-081117-010451
22. Wilson RC, Carroll D. The daunting economics of therapeutic genome editing. CRISPR J. 2019;2(5):280–4. https://doi.org/10.1089/crispr.2019.0052
23. Porteus MH. A new class of medicines through DNA editing. N Engl J Med. 2019;380(10):947–59. https://doi.org/10.1056/NEJMra1800729
24. Saayman S, Ali SA, Morris KV, Weinberg MS. The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opin Biol Ther. 2015;15(6):819–30. https://doi.org/10.1517/14712598.2015.1036736
25. Allers K, Schneider T. CCR5Δ32 mutation and HIV infection: basis for curative HIV therapy. Curr Opin Virol. 2015;14:24–29. https://doi.org/10.1016/j.coviro.2015.06.007
26. Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep. 2013;3:2510. https://doi.org/10.1038/srep02510
27. Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci USA. 2014;111(31):11461–6. https://doi.org/10.1073/pnas.1405186111
28. Benjamin R, Berges BK, Solis-Leal A, Igbinedion O, Strong CL, Schiller MR. TALEN gene editing takes aim on HIV. Hum Genet. 2016;135(9):1059–70. https://doi.org/10.1007/s00439-016-1678-2
29. Didigu CA, Wilen CB, Wang J, Duong J, Secreto AJ, Danet-Desnoyers GA, et al. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood. 2014;123(1):61–9. https://doi.org/10.1182/blood-2013-08-521229
30. Yuan J, Wang J, Crain K, Feams C, Kim KA, Hua KL, et al. Zinc-finger nuclease editing of human cxcr4 promotes HIV-1 CD4(+) T cell resistance and enrichment. Mol Ther. 2012;20(4):849–59. https://doi.org/10.1038/mt.2011.310
31. Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 2014;345(6201):1184–8. https://doi.org/10.1126/science.1254445
32. Wang L, Yang Y, Breton C, Bell P, Li M, Zhang J, et al. A mutation-independent CRISPR-Cas9-mediated gene targeting approach to treat a murine model of ornithine transcarbamylase deficiency. Sci Adv. 2020;6(7):eaax5701. https://doi.org/10.1126/sciadv.aax5701
33. Estève J, Blouin JM, Lalanne M, Azzi-Martin L, Dubus P, Bidet A, et al. Targeted gene therapy in human-induced pluripotent stem cells from a patient with primary hyperoxaluria type 1 using CRISPR/Cas9 technology. Biochem Biophys Res Commun. 2019;517(4):677–83. https://doi.org/10.1016/j.bbrc.2019.07.109
34. Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33(1):73–80. https://doi.org/10.1038/nbt.3081
35. Pavel-Dinu M, Wiebking V, Dejene BT, Srifa W, Mantri S, Nicolas CE, et al. Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat Commun. 2019;10(1):5624. https://doi.org/10.1038/s41467-019-09614-y
36. Park H, Oh J, Shim G, Cho B, Chang Y, Kim S, et al. In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat Neurosci. 2019;22(4):524–28. https://doi.org/10.1038/s41593-019-0352-0
37. Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun. 2017;8:16007. https://doi.org/10.1038/ncomms14454
38. Alapati D, Zacharias WJ, Hartman HA, Rossidis AC, Stratigis JD, Ahn NJ, et al. In utero gene editing for monogenic lung disease. Sci Transl Med. 2019;11(488):eaav8375. https://doi.org/10.1126/scitranslmed.aav8375
39. Brusson M, Miccio A. Genome editing approaches to β-hemoglobinopathies. Prog Mol Biol Transl Sci. 2021;182:153–83. https://doi.org/10.1016/bs.pmbts.2021.01.025
40. Modarai SR, Kanda S, Bloh K, Opdenaker LM, Kmiec EB. Precise and error-prone CRISPR-directed gene editing activity in human CD34+ cells varies widely among patient samples. Gene Ther. 2021;28:105–13. https://doi.org/10.1038/s41434-020-00192-z
41. Palmer DC, Guittard GC, Franco Z, Crompton JG, Eil RL, Patel SJ, et al. Cish actively silences TCR signaling in CD8+ T cells to maintain tumor tolerance. J Exp Med. 2015;212(12):2095–113. https://doi.org/10.1084/jem.20150304
42. Osborn MJ, Webber BR, Knipping F, Lonetree C, Tennis N, DeFeo AP, et al. Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases. Mol Ther. 2016;24(3):570–81. https://doi.org/10.1038/mt.2015.197
43. Tran E, Ahmadzadeh M, Lu YC, Gros A, Turcotte S, Robbins PF, et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science. 2015;350(6266):1387–90. https://doi.org/10.1126/science.aad1253
44. Hu Z, Ding W, Zhu D, Yu L, Jiang X, Wang X, et al. TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy. J Clin Invest. 2015;125(1):425–36. https://doi.org/10.1172/JCI78206
45. DiGiusto DL, Cannon PM, Holmes MC, Li L, Rao A, Wang J, et al. Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells. Mol Ther Methods Clin Dev. 2016;3:16067. https://doi.org/10.1038/mtm.2016.67
46. Choi M, Han E, Lee S, Kim T, Shin W. Regulatory oversight of gene therapy and cell therapy products in Korea. Adv Exp Med Biol. 2015;871:163–79. https://doi.org/10.1007/978-3-319-18618-4_9
47. Claussnitzer M, Cho JH, Collins R, Cox NJ, Dermitzakis ET, Hurles ME, et al. A brief history of human disease genetics. Nature. 2020;577(7789):179–89. https://doi.org/10.1038/s41586-019-1879-7
48. Turro E, Astle WJ, Megy K, Gräf S, Greene D, Shamardina O, et al. Whole-genome sequencing of patients with rare diseases in a national health system. Nature. 2020;583(7814):96–102. https://doi.org/10.1038/s41586-020-2434-2
49. Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. New Engl J Med. 2021;384(3):252–60. https://doi.org/10.1056/NEJMoa2031054
Supplementary files
![]() |
1. Table 3. Examples of in vitro and in vivo studies of the therapeutic potential of genome-editing systems | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(1MB)
|
Indexing metadata ▾ |
![]() |
2. Table 4. Examples of clinical uses of genome-editing systems | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(711KB)
|
Indexing metadata ▾ |
![]() |
3. Table 5. Examples of regulatory documents applicable to the development of medicinal products based on somatic cell genome-editing technologies | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(689KB)
|
Indexing metadata ▾ |
Review
For citations:
Pokrovsky N.S., Vodyakova M.A., Melnikova E.V., Merkulov V.A. Development of Medicinal Products Based on Gene-Editing Technology: Regulatory Practices. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2023;13(2-1):248-260. (In Russ.) https://doi.org/10.30895/1991-2919-2023-481