Preview

Regulatory Research and Medicine Evaluation

Advanced search

β-Lactam Antibiotics—Drug-Drug Interaction Mediated by Organic Anion Transporters OAT1 and OAT3

https://doi.org/10.30895/1991-2919-2020-10-3-177-183

Abstract

Organic anion transporters OAT1 and OAT3 play a key role in elimination of most β-lactam antibiotics. Since nonsteroidal anti-inflammatory drugs, antivirals, antitumor agents, and some other drugs are also substrates of OAT1/3, this enables drug-drug interaction (DDI). The aim of the study was to analyze scientific literature to determine the likelihood and significance of β-lactam antibiotic DDI mediated by organic anion transporters, as well as potential for predicting it. In clinical practice, inhibition of β-lactam antibiotic elimination is used to increase systemic exposition and reduce the cost of antibiotic therapy. OAT inhibitors (cilastatin, betamipron) are used in combination drugs to reduce nephrotoxicity of carbapenems. On the other hand, an increase in the concentration of β-lactams due to OAT inhibition may lead to adverse drug reactions. Therefore, the European Medicines Agency and the Food and Drug Administration recommendations for the development of new drugs state that in the case of significant renal excretion (≥25%) it is necessary to investigate OAT1/3 transport in vitro and calculate inhibition constant Ki and/or half maximal inhibitory concentration IC50 for predicting DDI. One of the main problems is the variability of Ki and IC50 values between laboratories, which requires the development of general recommendations for different transporters as regards methods of determination of these parameters.

About the Authors

I. A. Mazerkina
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Irina A. Mazerkina, Cand. Sci

8/2 Petrovsky Blvd, Moscow 127051



V. A. Evteev
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Vladimir A. Evteev

8/2 Petrovsky Blvd, Moscow 127051



A. B. Prokofiev
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Aleksey B. Prokofiev, Dr. Sci. (Med.)

8/2 Petrovsky Blvd, Moscow 127051



O. V. Muslimova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Olga V. Muslimova, Cand. Sci. (Med.)

8/2 Petrovsky Blvd, Moscow 127051



E. Yu. Demchenkova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Elena Yu. Demchenkova, Cand. Sci. (Pharm.)

8/2 Petrovsky Blvd, Moscow 127051



References

1. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KLR, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36. https://doi.org/10.1038/nrd3028

2. Ueo H, Motohashi H, Katsura T, Inui K. Human organic anion transporter hOAT3 is a potent transporter of cephalosporin antibiotics, in comparison with hOAT1. Biochem Pharmacol. 2005;70(7):1104–13. https://doi.org/10.1016/j.bcp.2005.06.024

3. Takeda M, Babu E, Narikawa S, Endou H. Interaction of human organic anion transporters with various cephalosporin antibiotics. Eur J Pharmacol. 2002;438(3):137–42. https://doi.org/10.1016/s00142999(02)01306-7

4. Vanwert AL, Bailey RM, Sweet DH. Organic anion transporter 3 (Oat3/ Slc22a8) knockout mice exhibit altered clearance and distribution of penicillin G. Am J Physiol Renal Physiol. 2007;293(4):F1332–41. https://doi.org/10.1152/ajprenal.00319.2007

5. Khamdang S, Takeda M, Noshiro R, Narikawa S, Enomoto A, Anzai N, et al. Interactions of human organic anion transporters and human organic cation transporters with nonsteroidal antiinflammatory drugs. J Pharmacol Exp Ther. 2002;303(2):534–9. https://doi.org/10.1124/jpet.102.037580

6. Apiwattanakul N, Sekine T, Chairoungdua A, Kanai Y, Nakajima N, Sophasan S, et al. Transport properties of nonsteroidal anti-inflammatory drugs by organic anion transporter 1 expressed in Xenopus laevis oocytes. Mol Pharmacol. 1999;55(5):847–54. PMID: 10220563

7. Nozaki Y, Kusuhara H, Kondo T, Iwaki M, Shiroyanagi Y, Nakayama H, et al. Species difference in the inhibitory effect of nonsteroidal anti-inflammatory drugs on the uptake ofmethotrexate by human kidney slices. J Pharmacol Exp Ther. 2007;322(3):1162–70. https://doi.org/10.1124/jpet.107.121491

8. Sato M, Iwanaga T, Mamada H, Ogihara T, Yabuuchi H, Maeda T, et al. Involvement of uric acid transporters in alteration of serum uric acid level by angiotensin II receptor blockers. Pharm Res. 2008;25(3):639–46. https://doi.org/10.1007/s11095-007-9401-6

9. Takeda M, Khamdang S, Narikawa S, Kimura H, Hosoyamada M, Cha SH, et al. Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J Pharmacol Exp Ther. 2002;302(2):666–71. https://doi.org/10.1124/jpet.102.034330

10. Cha SH, Sekine T, Fukushima JI, Kanai Y, Kobayashi Y, Goya T, et al. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol. 2001;59(5):1277–86. https://doi.org/10.1124/mol.59.5.1277

11. Uwai Y, Ida H, Tsuji Y, Katsura T, Inui K. Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm Res. 2007;24(4):811–5. https://doi.org/10.1007/s11095-006-9196-x

12. Truong DM, Kaler G, Khandelwal A, Swaan PW, Nigam SK. Multi-level analysis of organic anion transporters 1, 3, and 6 reveals major differences in structural determinants of antiviral discrimination. J Biol Chem. 2008;283(13):8654–63. https://doi.org/10.1074/jbc.M708615200

13. Takeda M, Khamdang S, Narikawa S, Kimura H, Kobayashi Y, Yamamoto T. Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther. 2002;300(3):918–24. https://doi.org/10.1124/jpet.300.3.918

14. Ahn S-Y, Bhatnagar V. Update on the molecular physiology of organic anion transporters. Curr Opin Nephrol Hypertens. 2008;17(5):499–505. https://doi.org/10.1097/MNH.0b013e32830b5d5d

15. Srimaroeng C, Perry JL, Pritchard JB. Physiology, structure, and regulation of the cloned organic anion transporters. Xenobiotica. 2008;38(7–8):889–935. https://doi.org/10.1080/00498250801927435

16. Burckhardt BC, Burckhardt G. Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev Physiol Biochem Pharmacol. 2003;146:95–158. https://doi.org/10.1007/s10254-0020003-8

17. El-Sheikh AAK, Masereeuw R, Russel FGM. Mechanisms of renal anionic drug transport. Eur J Pharmacol. 2008;585(2–3):245–55. https://doi.org/10.1016/j.ejphar.2008.02.085

18. Bresler VM, Natochin YuV. Inhibition of fluorescin secretion by the diuretics in the proximal tubule of the frog kidney (intravital study by contact microscopy). Bulletin of Experimental Biology and Medicine. 1973;75(6):67–9 (In Russ.)

19. Beyer KH, Flippin H, Verwey WF, Woodward R. The effect of para-aminohippuric acid on plasma concentration of penicillin in man. JAMA. 1944;126(16):1007–9. https://doi.org/10.1001/jama.1944.02850510015003

20. Rammelkamp C, Bradley S. Excretion of penicillin in man. Proc Soc Exper Biol & Med. 1943;53:30. https://doi.org/10.3181/0037972753-14171

21. Beyer KH, Miller AK, Russo HF, Patch E, Verwey WF. The inhibitory effect of caronamide on the renal elimination of penicillin. Am J Physiol. 1947;149(2):355–68. https://doi.org/10.1152/ajplegacy.1947.149.2.355

22. Beyer KH, Russo HF, Tillson EK, Miller AK, Verwey WF, et al. ‘Benemid,’ p-(di-n-propylsulfamyl)-benzoic acid; its renal affinity and its elimination. Am J Physiol. 1951;166(3):625–40. https://doi.org/10.1152/ajplegacy.1951.166.3.625

23. Lopez-Nieto CE, You G, Barros EJG, Beier DR, Nigam SK. Molecular cloning and characterization of a novel transport protein with very high expression in the kidney. J Am Soc Nephrol. 1996;7:1301.

24. Goa KL, Noble S. Panipenem/betamipron. Drugs. 2003;63(9):91325; discussion 926. https://doi.org/10.2165/00003495-20036309000005

25. Payne LE, Gagnon DJ, Riker RR, Seder DB, Glisic EK, Morris JG, et al. Cefepime-induced neurotoxicity: a systematic review. Crit Care. 2017;21(1):276. https://doi.org/10.1186/s13054-017-1856-1

26. Wallace KL. Antibiotic-induced convulsions. Crit Care Clin. 1997;13(4),741–62. https://doi.org/10.1016/s0749-0704(05)70367-5

27. Miller AD, Ball AM, Bookstaver PB, Dornblaser EK, Bennett CL. Epileptogenic potential of carbapenem agents: mechanism of action, seizure rates, and clinical considerations. Pharmacotherapy. 2011;31(4):408–23. https://doi.org/10.1592/phco.31.4.408

28. Tune BM. Nephrotoxicity of beta-lactam antibiotics: mechanisms and strategies for prevention. Pediatr Nephrol. 1997;11(6):768–72. https://doi.org/10.1007/s004670050386

29. Imani S, Buscher H, Marriott D, Gentili S, Sandaradura I. Too much of a good thing: a retrospective study of β-lactam concentrationtoxicity relationships. J Antimicrob Chemother. 2017;72(10):2891–7. https://doi.org/10.1093/jac/dkx209

30. Hirouchi Y, Naganuma H, Kawahara Y, Okada R, Kamiya A, Inui K, Hori R. Preventive effect of betamipron on nephrotoxicity and uptake of carbapenems in rabbit renal cortex. Jpn J Pharmacol. 1994;66(1):1–6. https://doi.org/10.1254/jjp.66.1

31. Kim SH, Kim WB, Kwon JW, Lee MG. Nephroprotective effect of betamipron on a new carbapenem, in rabbits. Biopharm Drug Dispos. 1999;20(3):125–9. https://doi.org/10.1002/(sici)1099-081x(199904)20:3<125::aid-bdd163>3.0.co;2-v

32. Huo X, Meng Q, Wang C, Zhu Y, Liu Z, Ma X. Cilastatin protects against imipenem-induced nephrotoxicity via inhibition of renal organic anion transporters (OATs). Acta Pharm Sin B. 2019;9(5):986–96. https://doi.org/10.1016/j.apsb.2019.02.005

33. Yamazaki I, Shirakawa Y, Fugono T. Comparison of the renal excretory mechanisms of cefmenoxime and other cephalosporins: effect of para-aminohippurate on renal clearance and intrarenal distribution of cephalosporins in rabbits. J Antibiot (Tokyo). 1981;34(11):1476–85. https://doi.org/10.7164/antibiotics.34.1476

34. Saitoh H, Oda M, Gyotoku T, Kobayashi M, Fujisaki H, Sekikawa H. A beneficial interaction between imipenem and piperacillin possibly through their renal excretory process. Biol Pharm Bull. 2006;29(12):2519–22. https://doi.org/10.1248/bpb.29.2519

35. Jung KY, Takeda M, Shimoda M, Narikawa S, Tojo A, Kim DK, et al. Involvement of rat organic anion transporter 3 (rOAT3) in cephaloridine-induced nephrotoxicity: in comparison with rOAT1. Life Sci. 2002;70(16):1861–74. https://doi.org/10.1016/s00243205(02)01500-x

36. Jariyawat S, Sekine T, Takeda M, Apiwattanakul N, Kanai Y, Sophasan S, et al. The interaction and transport of beta-lactam antibiotics with the cloned rat renal organic anion transporter 1. J Pharmacol Exp Ther. 1999;290(2):672–7. PMID: 10411577

37. Takeda M, Narikawa S, Hosoyamada M, Cha SH, Sekine T, Endou H. Characterization of organic anion transport inhibitors using cells stably expressing human organic anion transporters. Eur J Pharmacol. 2001;419(2–3):113–20. https://doi.org/10.1016/s00142999(01)00962-1

38. Deguchi T, Kusuhara H, Takadate A, Endou H, Otagiri M, Sugiyama Y. Characterization of uremic toxin transport by organic anion transporters in the kidney. Kidney Int. 2004;65(1):162–74. https://doi.org/10.1111/j.1523-1755.2004.00354.x

39. Shibayama T, Sugiyama D, Kamiyama E, Tokui T, Hirota T, Ikeda T. Characterization of CS-023 (RO4908463), a novel parenteral carbapenem antibiotic, and meropenem as substrates of human renal transporters. Drug Metab Pharmacokinet. 2007;22(1):41–7. https://doi.org/10.2133/dmpk.22.41

40. Ivanyuk A, Livio F, Biollaz J, Buclin T. Renal drug transporters and drug interactions. Clin Pharmacokinet. 2017;56(8):825–92. https://doi.org/10.1007/s40262-017-0506-8

41. Ye J, Liu Q, Wang C, Meng Q, Sun H, Peng J, et al. Benzylpenicillin inhibits the renal excretion of acyclovir by OAT1 and OAT3. Pharmacol Rep. 2013;65(2):505–12. https://doi.org/10.1016/s17341140(13)71026-0

42. Chen J, Terada T, Ogasawara K, Katsura T, Inui K. Adaptive responses of renal organic anion transporter 3 (OAT3) during cholestasis. Am J Physiol Renal Physiol. 2008;295(1):F247–52. https://doi.org/10.1152/ajprenal.00139.2008

43. Katsube T, Miyazaki S, Narukawa Y, Hernandez-Illas M, Wajima T. Drug-drug interaction of cefiderocol, a siderophore cephalosporin, via human drug transporters. Eur J Clin Pharmacol. 2018;74(7):931–8. https://doi.org/10.1007/s00228-018-2458-9

44. Fleck C, Hilger R, Jurkutat S, Karge E, Merkel U, Schimske A, Schubert J. Ex vivo stimulation of renal transport of the cytostatic drugs methotrexate, cisplatin, topotecan (Hycamtin) and raltitrexed (Tomudex) by dexamethasone, T3 and EGF in intact human and rat kidney tissue and in human renal cell carcinoma. Urol Res. 2002;30(4):256–62. https://doi.org/10.1007/s00240-002-0265-2


Review

For citations:


Mazerkina I.A., Evteev V.A., Prokofiev A.B., Muslimova O.V., Demchenkova E.Yu. β-Lactam Antibiotics—Drug-Drug Interaction Mediated by Organic Anion Transporters OAT1 and OAT3. The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2020;10(3):177-183. (In Russ.) https://doi.org/10.30895/1991-2919-2020-10-3-177-183

Views: 907


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-3062 (Print)
ISSN 3034-3453 (Online)