Preview

Regulatory Research and Medicine Evaluation

Advanced search

Dose Selection in Preclinical Studies: Cross-Species Dose Conversion

https://doi.org/10.30895/1991-2919-2020-10-1-19-28

Abstract

One of the major obstacles to effective translational medicine is the challenge of translating animal research results into clinical studies. Scientific literature mainly addresses the selection of the drug dose at initiation of clinical trials (Phase 1). Appropriate selection of doses is also essential for preclinical toxicology and pharmacology studies. Some basic principles that are used when translating dosages from animal models to humans are applicable to selection and justification of doses when planning and conducting preclinical studies. The paper provides an overview of the main methods that can be used for selection and justification of animal doses in preclinical studies, e.g. cross-species dose conversion using body surface area scaling. It summarises situations when doses may be directly converted based on body weight. The paper gives special attention to cross-species dose translation according to pharmacokinetic data. There is no one-size-fits-all approach to cross-species translation; dose conversion must be scientifically justified taking into consideration all information available on the test drug, i.e. its chemical structure, intended route of administration, pharmacokinetic parameters, preclinical and clinical data on pharmacodynamics, and inter-species differences in pharmacokinetics and pharmacodynamics.

About the Authors

E. V. Shekunova
Research and Production Association “HOME OF PHARMACY”
Russian Federation

Elena V. Shekunova - Cand. Sci. (Biol.).

3/245 Zavodskaya St., Kuzmolovsky, Vsevolozhsky District, Leningrad Oblast 188663



M. A. Kovaleva
Research and Production Association “HOME OF PHARMACY”
Russian Federation

Maria A. Kovaleva - Cand. Sci. (Biol.).  

3/245 Zavodskaya St., Kuzmolovsky, Vsevolozhsky District, Leningrad Oblast 188663



M. N. Makarova
Research and Production Association “HOME OF PHARMACY”
Russian Federation

Marina N. Makarova - Dr. Sci. (Med.). 

3/245 Zavodskaya St., Kuzmolovsky, Vsevolozhsky District, Leningrad Oblast 188663



V. G. Makarov
Research and Production Association “HOME OF PHARMACY”
Russian Federation

Valery G. Makarov - Dr. Sci. (Med.), Professor. 

3/245 Zavodskaya St., Kuzmolovsky, Vsevolozhsky District, Leningrad Oblast 188663



References

1. Shlyakhto EV. Translational research as a model of progress in current medical science. Translyatsionnaya meditsina = Translational Medicine. 2014;(1):5-18 (In Russ)

2. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27-31. https://doi.org/10.4103/0976-0105.177703

3. Rubner M. Ueber den Einfluss der Korpergrosse auf Stoff- und Kraft-wechsel. Z Biol. 1883;19:535-62.

4. Kleiber M. Body size and metabolism. Hilgardia. 1932;6(11):315—53. https://doi.org/10.3733/hilg.v06n11p315

5. White CR, Seymour RS. Mammalian basal metabolic rate is proportional to body mass 2/3. Proc Natl Acad Sci USA. 2003;100(7):4046-9. https://doi.org/10.1073/pnas.0436428100

6. White CR, Seymour RS. Allometric scaling of mammalian metabolism. J Exp Biol. 2005;208(Pt 9):1611-9. https://doi.org/10.1242/jeb.01501

7. Frasier CC. An explanation of the relationship between mass, metabolic rate and characteristic length for placental mammals. Peer J. 2015;3:e1228. https://doi.org/10.7717/peerj.1228

8. Freireich EJ, Gehan EA, Rall DP, Schmidt LH, Skipper HE. Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemother Rep. 1966;50(4):219—44. PMID: 4957125

9. Schein PS, Davis RD, Carter S, Newman J, Schein DR, Rall DP. The evaluation of anticancer drugs in dogs and monkeys for the prediction of qualitative toxicities in man. Clin Pharmacol Ther. 1970;11(1):3-40. https://doi.org/10.1002/cpt197011 13

10. Blanchard OL, Smoliga JM. Translating dosages from animal models to human clinical trials — revisiting body surface area scaling. FASEB J. 2015;29(5):1629—34. https://doi.org/10.1096/fj.14-269043

11. al-Kahtani MA, Zuleta C, Caviedes-Vidal E, Garland T Jr. Kidney mass and relative medullary thickness of rodents in relation to habitat, body size, and phylogeny. Physiol Biochem Zool. 2004;77(3):346-65. https://doi.org/10.1086/420941

12. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22(3):659-61. https://doi.org/10.1096/fj.07-9574LSF

13. Attarwala H. TGN1412: from discovery to disaster. J Young Pharm. 2010;2(3):332-6. https://doi.org/10.4103/0975-1483.66810

14. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, Panoskaltsis N. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355(10):1018-28. https://doi.org/10.1056/NEJMoa063842

15. Klebovich I, Kanerva H, Bojti E, Urtti A, Drabant S. Comparative pharmacokinetics of deramciclane in rat, dog, rabbit and man after the administration of a single oral dose of 3 mg/kg. Pharm Pharmacol Commun. 1998;(4):129-36.

16. Yu RZ, Kim TW, Hong A, Watanabe TA, Gaus HJ, Geary RS. Crossspecies pharmacokinetic comparison from mouse to man of a second-generation antisense oligonucleotide, ISIS 301012, targeting human apolipoprotein B-100. Drug Metab Dispos. 2007;35(3):460-8. https://doi.org/10.1124/dmd.106.012401

17. Gurney H. How to calculate the dose of chemotherapy. Br J Cancer. 2002;86(8):1297-302. https://doi.org/10.1038/sj.bjc.6600139

18. Lin JH. Applications and limitations of interspecies scaling and in vitro extrapolation in pharmacokinetics. Drug Metab Dispos. 1998;26(12):1202-12.

19. Mahmood I, Balian JD. The pharmacokinetic principles behind scaling from preclinical results to phase I protocols. Clin Pharmacokinet. 1999;36(1):1 —11. https://doi.org/10.2165/00003088-199936010-00001

20. Srinivas NR, Ahlawat P. Prediction of human pharmacokinetic parameters using animal data and principles of allometry. A case using bicifadine, a non-narcotic analgesic, as an example. Arzneimittelforsc-hung. 2009;59(12):625—30. https://doi.org/10.1055/s-0031-1296450

21. Rescigno A. Compartmental analysis and its manifold applications to pharmacokinetics. AAPS J. 2010;12(1):61-72. https://doi.org/10.1208/s12248-009-9160-x

22. Khalil F, Laer S. Physiologically based pharmacokinetic modeling: methodology, applications, and limitations with a focus on its role in pediatric drug development. JBiomedBiotechnol. 2011;2011:907461. https://doi.org/10.1 155/2011/907461

23. Atkinson AJ Jr, Smith BP. Models of physiology and physiologically based models in clinical pharmacology. Clin Pharmacol Ther. 2012;92(1):3-6. https://doi.org/10.1038/clpt.2012.67


Review

For citations:


Shekunova E.V., Kovaleva M.A., Makarova M.N., Makarov V.G. Dose Selection in Preclinical Studies: Cross-Species Dose Conversion. The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2020;10(1):19-28. (In Russ.) https://doi.org/10.30895/1991-2919-2020-10-1-19-28

Views: 4228


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-3062 (Print)
ISSN 3034-3453 (Online)