Dose Selection in Preclinical Studies: Cross-Species Dose Conversion
https://doi.org/10.30895/1991-2919-2020-10-1-19-28
Abstract
One of the major obstacles to effective translational medicine is the challenge of translating animal research results into clinical studies. Scientific literature mainly addresses the selection of the drug dose at initiation of clinical trials (Phase 1). Appropriate selection of doses is also essential for preclinical toxicology and pharmacology studies. Some basic principles that are used when translating dosages from animal models to humans are applicable to selection and justification of doses when planning and conducting preclinical studies. The paper provides an overview of the main methods that can be used for selection and justification of animal doses in preclinical studies, e.g. cross-species dose conversion using body surface area scaling. It summarises situations when doses may be directly converted based on body weight. The paper gives special attention to cross-species dose translation according to pharmacokinetic data. There is no one-size-fits-all approach to cross-species translation; dose conversion must be scientifically justified taking into consideration all information available on the test drug, i.e. its chemical structure, intended route of administration, pharmacokinetic parameters, preclinical and clinical data on pharmacodynamics, and inter-species differences in pharmacokinetics and pharmacodynamics.
Keywords
About the Authors
E. V. ShekunovaRussian Federation
Elena V. Shekunova - Cand. Sci. (Biol.).
3/245 Zavodskaya St., Kuzmolovsky, Vsevolozhsky District, Leningrad Oblast 188663
M. A. Kovaleva
Russian Federation
Maria A. Kovaleva - Cand. Sci. (Biol.).
3/245 Zavodskaya St., Kuzmolovsky, Vsevolozhsky District, Leningrad Oblast 188663
M. N. Makarova
Russian Federation
Marina N. Makarova - Dr. Sci. (Med.).
3/245 Zavodskaya St., Kuzmolovsky, Vsevolozhsky District, Leningrad Oblast 188663
V. G. Makarov
Russian Federation
Valery G. Makarov - Dr. Sci. (Med.), Professor.
3/245 Zavodskaya St., Kuzmolovsky, Vsevolozhsky District, Leningrad Oblast 188663
References
1. Shlyakhto EV. Translational research as a model of progress in current medical science. Translyatsionnaya meditsina = Translational Medicine. 2014;(1):5-18 (In Russ)
2. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27-31. https://doi.org/10.4103/0976-0105.177703
3. Rubner M. Ueber den Einfluss der Korpergrosse auf Stoff- und Kraft-wechsel. Z Biol. 1883;19:535-62.
4. Kleiber M. Body size and metabolism. Hilgardia. 1932;6(11):315—53. https://doi.org/10.3733/hilg.v06n11p315
5. White CR, Seymour RS. Mammalian basal metabolic rate is proportional to body mass 2/3. Proc Natl Acad Sci USA. 2003;100(7):4046-9. https://doi.org/10.1073/pnas.0436428100
6. White CR, Seymour RS. Allometric scaling of mammalian metabolism. J Exp Biol. 2005;208(Pt 9):1611-9. https://doi.org/10.1242/jeb.01501
7. Frasier CC. An explanation of the relationship between mass, metabolic rate and characteristic length for placental mammals. Peer J. 2015;3:e1228. https://doi.org/10.7717/peerj.1228
8. Freireich EJ, Gehan EA, Rall DP, Schmidt LH, Skipper HE. Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemother Rep. 1966;50(4):219—44. PMID: 4957125
9. Schein PS, Davis RD, Carter S, Newman J, Schein DR, Rall DP. The evaluation of anticancer drugs in dogs and monkeys for the prediction of qualitative toxicities in man. Clin Pharmacol Ther. 1970;11(1):3-40. https://doi.org/10.1002/cpt197011 13
10. Blanchard OL, Smoliga JM. Translating dosages from animal models to human clinical trials — revisiting body surface area scaling. FASEB J. 2015;29(5):1629—34. https://doi.org/10.1096/fj.14-269043
11. al-Kahtani MA, Zuleta C, Caviedes-Vidal E, Garland T Jr. Kidney mass and relative medullary thickness of rodents in relation to habitat, body size, and phylogeny. Physiol Biochem Zool. 2004;77(3):346-65. https://doi.org/10.1086/420941
12. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22(3):659-61. https://doi.org/10.1096/fj.07-9574LSF
13. Attarwala H. TGN1412: from discovery to disaster. J Young Pharm. 2010;2(3):332-6. https://doi.org/10.4103/0975-1483.66810
14. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, Panoskaltsis N. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355(10):1018-28. https://doi.org/10.1056/NEJMoa063842
15. Klebovich I, Kanerva H, Bojti E, Urtti A, Drabant S. Comparative pharmacokinetics of deramciclane in rat, dog, rabbit and man after the administration of a single oral dose of 3 mg/kg. Pharm Pharmacol Commun. 1998;(4):129-36.
16. Yu RZ, Kim TW, Hong A, Watanabe TA, Gaus HJ, Geary RS. Crossspecies pharmacokinetic comparison from mouse to man of a second-generation antisense oligonucleotide, ISIS 301012, targeting human apolipoprotein B-100. Drug Metab Dispos. 2007;35(3):460-8. https://doi.org/10.1124/dmd.106.012401
17. Gurney H. How to calculate the dose of chemotherapy. Br J Cancer. 2002;86(8):1297-302. https://doi.org/10.1038/sj.bjc.6600139
18. Lin JH. Applications and limitations of interspecies scaling and in vitro extrapolation in pharmacokinetics. Drug Metab Dispos. 1998;26(12):1202-12.
19. Mahmood I, Balian JD. The pharmacokinetic principles behind scaling from preclinical results to phase I protocols. Clin Pharmacokinet. 1999;36(1):1 —11. https://doi.org/10.2165/00003088-199936010-00001
20. Srinivas NR, Ahlawat P. Prediction of human pharmacokinetic parameters using animal data and principles of allometry. A case using bicifadine, a non-narcotic analgesic, as an example. Arzneimittelforsc-hung. 2009;59(12):625—30. https://doi.org/10.1055/s-0031-1296450
21. Rescigno A. Compartmental analysis and its manifold applications to pharmacokinetics. AAPS J. 2010;12(1):61-72. https://doi.org/10.1208/s12248-009-9160-x
22. Khalil F, Laer S. Physiologically based pharmacokinetic modeling: methodology, applications, and limitations with a focus on its role in pediatric drug development. JBiomedBiotechnol. 2011;2011:907461. https://doi.org/10.1 155/2011/907461
23. Atkinson AJ Jr, Smith BP. Models of physiology and physiologically based models in clinical pharmacology. Clin Pharmacol Ther. 2012;92(1):3-6. https://doi.org/10.1038/clpt.2012.67
Review
For citations:
Shekunova E.V., Kovaleva M.A., Makarova M.N., Makarov V.G. Dose Selection in Preclinical Studies: Cross-Species Dose Conversion. The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2020;10(1):19-28. (In Russ.) https://doi.org/10.30895/1991-2919-2020-10-1-19-28