
PA3PAБOTKA И ВАЛИДАЦИЯ МЕТОДИК ИССЛЕДОВАНИЯ DEVELOPMENT AND VALIDATION OF ANALYTICAL PROCEDURES

УДК 615.074:615.32:543.51:543.632.4 https://doi.org/10.30895/1991-2919-2023-522

Оригинальная статья | Original article

Селективное определение органических и неорганических форм мышьяка в слоевищах ламинарии и продуктах на их основе

Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации, Петровский б-р, д. 8, стр. 2, Москва, 127051, Российская Федерация

⊠ Щукин Виктор Михайлович; Schukin@expmed.ru

РЕЗЮМЕ

Ламинария способна накапливать соединения мышьяка в больших количествах даже при отсутствии заметного загрязнения окружающей среды. Из-за существенных различий в токсичности органических и неорганических соединений мышьяка при оценке риска потребления слоевищ ламинарии и продуктов на их основе актуально учитывать форму его содержания.

Цель работы: разработка методики селективного определения содержания органических и неорганических форм мышьяка в слоевищах ламинарии без использования прекурсоров наркотических веществ на основе методов масс-спектрометрии с индуктивно-связанной плазмой (ИСП-МС) и твердофазной экстракции.

Материалы и методы: в работе были использованы образцы слоевищ Laminaria saccharina и Laminaria japonica, модельные смеси соединений мышьяка с различной степенью окисления, биологически активные добавки к пище на основе слоевищ ламинарии. Твердофазную экстракцию проводили на картриджах Maxi-Clean SAX. Содержание мышьяка определяли с помощью масс-спектрометра с индуктивно-связанной плазмой Agilent 7900.

Результаты: установлено, что микроволновая экстракция деионизированной водой обеспечивает полноту извлечения мышьяк-содержащих соединений на уровне 91%. Добавление в экстрагент пероксида водорода приводит к полному извлечению соединений мышьяка из слоевищ ламинарии. Использование при твердофазной экстракции смеси органических и неорганических соединений мышьяка элюента на основе 3% пероксида водорода позволяет извлечь органическую фракцию, не смывая при этом с картриджа неорганические соединения мышьяка.

Выводы: разработана методика селективного количественного определения содержания органических и неорганических форм мышьяка в слоевищах ламинарии и продуктах на их основе, позволяющая выделять мышьяк-содержащие соединения из органической матрицы ламинарии исключительно раствором 3% пероксида водорода. Использование этого экстрагента позволяет эффективно разделять органическую и неорганическую фракции на этапе твердофазной экстракции без стадии нейтрализации испытуемого раствора.

Ключевые слова: слоевища ламинарии; неорганическая форма мышьяка; органическая форма мышьяка; селективное определение; твердофазная экстракция; масс-спектрометрия с индуктивно-связанной плазмой

Для цитирования: Щукин В.М., Ерина А.А., Швецова Ю.Н., Жигилей Е.С., Кузьмина Н.Е. Селективное определение органических и неорганических форм мышьяка в слоевищах ламинарии и продуктах на их основе. Ведомости Научного центра экспертизы средств медицинского применения. Регуляторные исследования и экспертиза лекарственных средств. 2023;13(2):206–215. https://doi.org/10.30895/1991-2919-2023-522

© В.М. Щукин, А.А. Ерина, Ю.Н. Швецова, Е.С. Жигилей, Н.Е. Кузьмина, 2023

V.M. Shchukin (D),
A.A. Erina (D),
Yu.N. Shvetsova (D),
E.S. Zhigilei (D),
N.E. Kuz'mina (D)

Selective Quantification of Organic and Inorganic Arsenic in Kelp Thalli and Kelp-Based Products

Scientific Centre for Expert Evaluation of Medicinal Products, 8/2 Petrovsky Blvd, Moscow 127051, Russian Federation

☑ Victor M. Shchukin; <u>Schukin@expmed.ru</u>

ABSTRACT

Kelp can accumulate large quantities of arsenic compounds even in the absence of considerable environmental pollution. A substantial difference in toxicity between organic and inorganic arsenic compounds makes the form of arsenic relevant for the risk assessment of consuming kelp thalli and kelp-based products.

The aim of the study was to develop an analytical procedure for the selective quantification of organic and inorganic arsenic in kelp thalli by inductively coupled plasma mass spectrometry and solid-phase extraction without scheduled precursors.

Materials and methods. The authors studied samples of *Laminaria saccharina* and *Laminaria japonica*, spiking mixtures of chemical compounds containing arsenic in different oxidation states, and bioactive dietary supplements based on kelp thalli. Solid-phase extraction was performed using Maxi-Clean SAX cartridges. The arsenic content was determined using an Agilent 7900 inductively coupled plasma mass spectrometer.

Results. Microwave-assisted extraction with deionised water ensures 91% recovery of arsenic-containing compounds from kelp thalli, and the addition of hydrogen peroxide to the extractant provides complete extraction. Solid-phase extraction with an eluent based on 3% $\rm H_2O_2$ can extract the organic fraction from a mixture of organic and inorganic arsenic compounds without washing the inorganic fraction off the cartridge.

Conclusions. The authors offer an effective analytical procedure for the selective quantification of organic and inorganic arsenic in kelp thalli and kelp-based products. This procedure allows for the isolation of arsenic-containing compounds from the organic matrix of kelp with 3% hydrogen peroxide. Solid-phase extraction with this extractant can effectively separate organic and inorganic fractions without prior neutralisation of the test solution.

Key words: kelp thalli; inorganic arsenic; organic arsenic; selective quantification; solid phase extraction; inductively coupled plasma mass spectrometry

For citation: Shchukin V.M., Erina A.A., Shvetsova Yu.N., Zhigilei E.S., Kuz'mina N.E. Selective quantification of organic and inorganic arsenic in kelp thalli and kelp-based products. *Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation.* 2023;13(2):206–215. https://doi.org/10.30895/1991-2919-2023-522

Введение

Бурые водоросли широко используются в медицине в виде лекарственных растительных препаратов, биологически активных добавок к пище (БАД), а также в фармацевтической, косметической и пищевой промышленности в качестве источника биологически активных минеральных и органических соединений [1–6]. Бурые водоросли являются одним из важнейших источников йода для организма человека [7].

Характерной особенностью бурых водорослей, в том числе ламинариевых, является

способность накапливать в больших количествах соединения мышьяка даже при отсутствии заметного загрязнения окружающей среды [8–11]. В связи с этим в Государственную фармакопею Российской Федерации (ГФ РФ) введена норма допустимого содержания мышьяка в ламинариевых водорослях, которая в 180 раз превышает такую же норму для других видов лекарственного растительного сырья (ЛРС) и лекарственных растительных препаратов (ЛРП): 90 мг/кг¹ и 0,5 мг/кг² соответственно.

¹ ФС 2.5.0080.18 Ламинарии слоевища (морская капуста). Государственная фармакопея Российской Федерации. XIV изд. Т. 4. М.: 2018.

² ОФС 1.5.3.009.15 Определение содержания тяжелых металлов и мышьяка в лекарственном растительном сырье и лекарственных растительных препаратах. Государственная фармакопея Российской Федерации. XIV изд. Т. 2. М.; 2018.

Соединения мышьяка, входящие в состав слоевищ ламинарии, разделяют на неорганические и органические формы. Неорганические формы включают в себя арсениты и арсенаты (суммарно несколько процентов от содержания общего мышьяка) [12]. Органические формы мышьяка представлены арсеносахарами в виде арсеносахарофосфатов и арсеносахаросульфонатов, а также арсенобетаином, монометиларсоновой кислотой и диметиларсоновой кислотой [12].

Поскольку токсичность большинства органических форм мышьяка (oAs) во много раз меньше токсичности его неорганических соединений (iAs) [13–15], принято нормировать исключительно iAs в ЛРС и ЛРП. Например, согласно Фармакопее США (USP) нормируют содержание только iAs в препаратах растительного происхождения³. Международный совет по гармонизации технических требований к лекарственным средствам для медицинского применения (International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, ICH) в руководстве по элементным примесям⁴ также приводит требования к допустимому содержанию в ЛРС и ЛРП исключительно для iAs. Однако исследования последнего десятилетия показали, что короткоживущие промежуточные метаболиты oAs в организме теплокровных обладают цитотоксичностью, превышающей токсичность iAs [14–17], поэтому в настоящее время все чаще используют селективное определение содержания iAs и oAs в ЛРС и ЛРП [18]. Таким образом, представляется актуальным разработать эффективную методику селективного определения содержания oAs и iAs в ЛРС бурых водорослей семейства ламинариевых (Laminariaceae), которые являются фармакопейными видами в России.

Для разделения оАs и iAs в биологических объектах и воде существует несколько общепринятых методик [19]. Самой простой является выделение iAs с помощью кислотной экстракции при кипячении в аппарате Сокслета с последующим полуколичественным колориметрическим определением содержания мышьяка⁵ по интенсивности окрашивания испытуемого раствора. Использование спектральных методов анализа вместо колориметрического позволяет перейти к количественным измерениям, однако данный метод экстракции в аппарате Сокслета плохо

подходит для определения малых концентраций неорганического мышьяка. В качестве экстрагента, как правило, используют соляную кислоту, являющуюся прекурсором наркотических веществ. Кроме того, при использовании кислотной экстракции образуется токсичный гидрид мышьяка — арсин [20].

На образовании и улавливании арсина, полученного в реакциях с различными модификаторами, основаны также методики прямого анализа с использованием спектральных методов. Химические модификаторы (например, соли палладия, циркония, церия) позволяют переводить в арсин либо оАs, либо iAs. Выбор подходящего модификатора зависит от органической матрицы исследуемого образца [21, 22].

Наиболее перспективными являются методики, основанные на экстракции соединений мышьяка из органической матрицы с последующими разделением и идентификацией их спектральными методами [20]. Максимальную чувствительность и информативность обеспечивает сочетание жидкостного хроматографа и масс-спектрометрического детектора с индуктивно-связанной плазмой (ИСП-МС), предусматривающее предварительную экстракцию соединений мышьяка различными методами [15, 19, 23-26]. Аппаратурное оснащение для таких методик является дорогостоящим. Кроме того, требуются стандартные образцы идентифицируемых мышьяк-содержащих соединений и большое количество растворителя.

Более простыми и дешевыми, но при этом мало уступающими в чувствительности, являются методики, основанные на твердофазном разделении оАѕ и iАѕ с последующим определением их содержания различными спектральными методами (преимущественно атомной абсорбцией с электротермическим атомизатором, ИСП-МС или рентгенофлуоресцентной спектрометрией) [27–31].

В большинстве описанных методик селективно определяют содержание iAs, содержание органических форм рассчитывают по разнице между содержанием общего As и iAs. Для выделения мышьяка из органической матрицы используют различные методы экстракции и экстрагенты, а также их комбинации [19, 21, 26, 28].

³ <561> Articles of botanical origin. United States Pharmacopeia. USP43–NF38 Second Supplement; 2022.

⁴ ICH quideline Q3D (R2) on elemental impurities. EMA/CHMP/ICH/353369/2013.

^{5 &}lt;2232> Elemental contaminants in dietary supplements. USP43-NF38; 2021.

⁶ EN 16278:2012 Animal feeding stuffs — Determination of inorganic arsenic by hydride generation atomic absorption spectrometry (HG-AAS) after microwave extraction and separation by solid phase extraction (SPE). Brussels: European Committee for Standardization; 2012.

Наиболее распространена методика твердофазной экстракции неорганического мышьяка, применяемая в Европейском союзе⁷. В качестве основного экстрагента в данной методике используется соляная кислота — прекурсор наркотических веществ. Она же используется для сорбентного уравновешивания картриджа и элюирования с него неорганических соединений мышьяка.

Цель работы — разработка методики селективного определения содержания органических и неорганических форм мышьяка в слоевищах ламинарии без использования прекурсоров наркотических веществ на основе методов ИСП-МС и твердофазной экстракции.

Материалы и методы

Объектами исследования служили образцы слоевищ ламинарии японской (Laminaria japonica, син. Saccharina japonica), собранной в акватории залива Петра Великого, Тихий океан (I), и ламинарии сахаристой (Laminaria saccharina, син. Saccharina latissima), собранной в акватории Соловецкого острова Белого моря (II). Видовая принадлежность образцов была определена с помощью макро- и микроскопического анализа. Также было исследовано два образца БАД на основе слоевищ ламинарии: «Ламинария (морская капуста)», ЗАО «Эвалар» (III), и «Ламинария SUPERFOOD», ООО «Крон» (IV).

Ввиду отсутствия сертифицированных растительных материалов «слоевища ламинарии» с аттестованными значениями содержания в них различных форм As, эффективность разделения оAs и iAs оценивали с помощью растворов модельных смесей различного состава (МС-1, МС-2, МС-3) (табл. 1). Для приготовления модельных смесей применяли диметиларсиновую кислоту (Sigma-Aldrich, кат. № 20835), метаарсинит натрия (Sigma-Aldrich, кат. № 57400-100G),

гептагидрат гидроарсената натрия (Thermo Fisher Scientific, кат. № 10048-95-0). Растворы модельных смесей требуемой концентрации готовили с использованием $3\% H_2O_3$.

В ходе исследования были использованы следующие реактивы: пероксид водорода (30%, Merck, кат. N° 1.07298), кислота азотная (69%, Ultratrace, Scharlau, кат. N° 7697-37-2), соляная кислота (37%, ос.ч., ООО ТД «Химмед»), карбонат аммония (ACS, Sigma-Aldrich, кат. N° 207861-100G), метанол (CARLO ERBA Reagents GmbH, кат. N° 67-56-1), стандартный образец мышьяка (аттестованное значение 1000 мг/дм³, Supelco, кат. N° 1.70303.0100), вода деионизованная, очищенная на установке Milli-Q, — Integral 3 (Millipore).

При минерализации и экстракции проб слоевищ ламинарии использовали систему микроволновой подготовки проб ETHOS UP (Milestone). При твердофазной экстракции применяли обладающие сильными анионообменными свойствами картриджи Maxi-Clean SAX (S*Pure). Для проведения экстракции картриджи были установлены в вакуумную камеру Visiprep DL (Supelco). Элементный анализ проводили с использованием масс-спектрометра с индуктивно-связанной плазмой Agilent 7900 (Agilent Technologies).

Методика микроволнового разложения образцов слоевищ ламинарии для определения содержания общего мышьяка. Точную навеску массой около 0,5 г измельченного испытуемого образца, высушенного до постоянной массы при $105\,^{\circ}$ С в течение 2 ч, помещали в сосуд для микроволнового разложения, добавляли 8 мл азотной кислоты концентрированной и 2 мл H_2O_2 , осторожно перемешивали до полного смачивания и помещали в микроволновую печь. Проводили минерализацию по программе, приведенной в magnue 2.

Таблица 1. Растворы модельных смесей с различным содержанием органических и неорганических форм мышьяка

Table 1. Solutions	of snikina	mixtures wit	h ditterent	organic and	inoraanic	arsenic content
Tuble II Solutions	oj spikilig	IIIINCUICS WILL	i aijjeieiit	organic and	morganic	arsenie content

Модельная смесь	Концентрация, мг/л Concentration, mg/L							
Spiking mixture	Диметиларсиновая кислота Dimethylarsinic acid	oAs	Метаарсинит натрия Sodium metaarsenite	Гептагидрат гидроарсената натрия Sodium hydrogen arsenate heptahydrate	iAs			
MC-1	1,84	1	0	0	0			
MC-2	0	0	0,87	2,08	1			
MC-3	1,84	1	0,87	2,08	1			

⁷ EN 16278:2012 Animal feeding stuffs — Determination of inorganic arsenic by hydride generation atomic absorption spectrometry (HG-AAS) after microwave extraction and separation by solid phase extraction (SPE). Brussels: European Committee for Standardization; 2012.

Таблица 2. Программа минерализации слоевищ ламинарии

Table 2. Mineralisation programme for kelp thalli

Этап Step	Время, мин <i>Time, min</i>	Температура, °С Temperature, °С
1	3	20-80
2	5	80
3	10-15	80-165
4	30	165

Полученные после микроволнового разложения растворы охлаждали до комнатной температуры, фильтровали через фильтр беззольный в мерные колбы объемом 25 мл, доводили объем раствора до метки водой деионизованной и перемешивали.

Методика экстракции мышьяк-содержащих соединений из слоевищ ламинарии. Точную навеску массой около 0,5 г измельченного и высушенного испытуемого образца помещали в сосуд для микроволнового разложения, добавляли 40 мл экстрагента, выдерживали 10 мин и проводили микроволновую экстракцию в течение 90 мин при 95 °C. В качестве экстрагента использовали растворы 3% Н₂О₂ в 0,07 М HCl, 1% H₂O₂ в 0,05 M HNO₂, 3% H₂O₂ в 0,07 M HNO₂, воду деионизованную, 3% $H_{2}O_{2}$. Полученный экстракт охлаждали до комнатной температуры, фильтровали через фильтр беззольный в мерные колбы объемом 50 мл, осадок промывали 7,0 мл экстрагента и им же доводили объем раствора до метки. Полученный испытуемый раствор тщательно перемешивали.

Методика твердофазной экстракции oAs и iAs. Перед проведением твердофазной экстракции картриджи кондиционировали для активации сорбента, пропуская через них метанол в количестве 2 мл. Сорбентное уравновешивание картриджа выполняли пропусканием 2 мл 3% H₂O₂. Для выделения оАs использовали смесь, содержащую 3 мл испытуемого раствора (или раствора модельной смеси) и 4 мл 3% H_2O_3 . Значения pH смеси повышали, используя раствор 40 мМ карбоната аммония. После прохождения элюента через картридж со скоростью 1,0 мл/мин последний промывали 4 мл раствора 0,5 М уксусной кислоты. Растворы, прошедшие через картридж, объединяли и определяли в них содержание oAs. Сорбированную на картридже неорганическую фракцию мышьяка элюировали 5 мл 0,4 М раствора азотной кислоты. В элюенте, прошедшем через картридж, определяли содержание iAs.

Методика определения содержания Аѕ методом ИСП-МС. Определение содержания мышьяка проводили методом калибровочной кривой, используя для ее построения изотоп 75 Аѕ. Параметры эксперимента: мощность высокочастотного генератора плазмы — 1500 Вт, поток плазменного газа (аргон) — 15 л/мин, поток газа распылителя (аргон) — 1,0 л/мин, скорость подачи пробы — 0,10 об/мин, время интегрирования — 0,1 с. Готовили по три параллельных испытуемых раствора каждого образца, определение содержания элементов проводили в пяти повторностях. Результаты измерений усредняли.

Статистическую обработку результатов осуществляли с помощью программы Microsoft Office Excel 2007 с установленным пакетом «Анализ данных». В *таблицах 3–5* приведены средние арифметические значения результатов анализа.

Результаты и обсуждение

Разрабатываемая методика включает три этапа: 1) экстракция мышьяк-содержащих соединений из органической матрицы слоевищ ламинарии;

- 2) разделение выделенных мышьяк-содержащих соединений на органические и неорганические формы с помощью твердофазной экстракции;
- 3) количественное определение oAs и iAs методом ИСП-МС.

Согласно данным литературы, разделение мышьяк-содержащих соединений на оАs и iAs методом твердофазной экстракции существенно зависит от pH элюента. В связи с этим, как правило, проводят три стадии разделения: сначала при pH 5,0-7,5 экстрагируют наиболее слабо сорбируемые на картридже соединения оАs, затем при pH 2,5 (0,5 M уксусной кислотой) экстрагируют мышьяк-содержащие органические кислоты, далее при pH 0,4 экстрагируют наиболее прочно сорбирующуюся на картридже неорганическую фракцию растворами 0,4 M азотной или соляной кислот [27, 28]. Этап выделения

мышьяк-содержащих соединений из органической матрицы проводят с использованием слабоконцентрированных растворов кислот (чаще всего используют 0,07 М раствор HCl или HNO₃). К растворам кислот принято добавлять пероксид водорода для окисления As(III) до As(V), так как iAs(III), в отличие от iAs(V), не сорбируется на ионно-обменном картридже и вместе с органической фракцией переходит в элюат.

Следует отметить, что эффективность связывания мышьяк-содержащих соединений с органической матрицей растения во многом зависит от вида растения. Так, авторы [32] на примере лиофилизированных саргассовых водорослей, аттестованных на содержание As (сертифицированный растительный материал NIES⁸ № 9), показали, что микроволновая экстракция деионизированной водой при 90 °C позволяет извлечь до 98% соединений мышьяка из данного семейства бурых водорослей. Замена кислоты на воду на стадии выделения соединений мышьяка из слоевищ ламинарии существенно упростила бы стадию твердофазной экстракции, так как водный испытуемый раствор, в отличие от кислотного, не нуждается в нейтрализации перед пропусканием через картридж. Поэтому на первом этапе исследования мы сравнили степень извлечения мышьяк-содержащих соединений из слоевищ ламинарии кислотными экстрагентами и деионизированной водой. Полноту экстракции оценивали, сравнивая содержание As в испытуемом растворе с референсным значением содержания общего мышьяка, в качестве которого использовали данные, полученные при полной микроволновой минерализации

пробы слоевищ ламинарии. Результаты сравнения представлены в *таблице 3*.

Данные подтверждают (табл. 3), что использование воды в качестве экстрагента позволяет извлечь 91% соединений мышьяка из органической матрицы слоевищ ламинарии. Замена деионизованной воды раствором 3% Н₂О₂ приводит к полному извлечению соединений мышьяка. Результат экстракции мышьяк-содержащих соединений из органической матрицы слоевищ ламинарии раствором 3% H₂O₂ сопоставим с результатом экстракции с помощью раствора 3% Н₂О₂ в 0,07 М НNО₂. Следует отметить, что оба варианта экстракции не приводят к превращению органических соединений в неорганические. При этом арсениты, сопоставимые с органическими соединениями по силе сорбции на картридже, практически полностью переходят в более прочно сорбирующиеся арсенаты [33]. Попытка сократить время эксперимента за счет перехода от одностадийной экстракции в течение 90 мин к трехстадийной экстракции по 10 мин каждая не привела к желаемому результату.

На следующем этапе исследований на модельных смесях проверяли степень разделения оАs и iAs методом твердофазной экстракции с использованием раствора 3% H_2O_2 . Значения pH растворов, содержащих 3 мл модельной смеси и 4 мл 3% H_2O_2 (5,39, 5,66 и 5,30 для MC-1, MC-2 и MC-3 соответственно), укладывались в интервал 5,0–7,5, при котором традиционно проводят первую стадию отделения оAs от iAs. Было установлено, что входящая в состав MC-1 и MC-3 диметиларсиновая кислота,

Таблица 3. Сравнительный анализ степени извлечения соединений мышьяка из слоевищ ламинарии при микроволновой экстракции (95 °C)

Table 3. Comparative analysis of the recovery of arsenic compounds from kelp thalli by microwave-assisted extraction (95 °C)

Состав экстрагента Extractant composition	Время экстракции, мин Extraction time, min	Степень извлечения, % <i>Recovery</i> , %
3% H ₂ O ₂ , 0,07 M HCl	90	85±6
1% H ₂ O ₂ , 0,05 M HNO ₃	90	84±3
3% H ₂ O ₂ , 0,07 M HNO ₃	90	93±8
H ₂ O	90	91±2
3% H ₂ O ₂	30*	83±3
3% H ₂ O ₂	60	87±3
3% H ₂ O ₂	90	102±4

^{*} Трехстадийная экстракция по 10 мин каждая.

^{*} Three extraction cycles, 10 min each.

⁸ National Institute for Environmental Studies (NIES), Japan.

окисляющаяся под действием пероксида водорода до диметиларсоновой кислоты, не сорбируется на картридже, а полностью переходит в элюат. В смывах картриджа $0,5\,\mathrm{M}$ уксусной кислотой As не обнаружен. Неорганическая фракция не десорбируется с картриджа при использовании $3\%\,\mathrm{H_2O_2}$, но полностью переходит в элюат при промывке картриджа $0,4\,\mathrm{M}$ HNO₂.

Результаты твердофазной экстракции модельных смесей представлены в *таблице 4*.

Присутствие диметиларсоновой кислоты в элюате при значении рН, близком к 5, позволяет предположить, что можно исключить стадию промывки картриджа уксусной кислотой. Для проверки данного предположения была изучена полнота разделения на картридже

Таблица 4. Разделение органической и неорганической форм мышьяка в модельных смесях методом твердофазной экстракции

Table 4. Separation of organic and inorganic arsenic from spiking mixtures by solid-phase extraction

№ образца Sample No.	Органич	еская форма мыш Organic arsenic (oA:		Heopганическая форма мышьяка (iAs) Inorganic arsenic (iAs)			
	Внесено, мг/л Spiked, mg/L	Найдено, мг/л Measured, mg/L	Степень извлечения, % <i>Recovery,</i> %	Внесено, мг/л Spiked, mg/L	Найдено, мг/л Measured, mg/L	Степень извлечения, % <i>Recovery,</i> %	
MC-1	1	0,96±0,06	96±6	0	0	-	
MC-2	0	0	-	1	1,02±0,08	102±8	
MC-3	1	1,10±0,10	110±10	1	1,06±0,05	106±5	

Примечание. «-» — не применимо.

Note. -, not applicable.

Таблица 5. Сравнительный анализ содержания органических и неорганических форм мышьяка в слоевищах ламинарии и БАД на их основе

Table 5. Comparative analysis of organic and inorganic arsenic content of kelp thalli and kelp-based dietary supplements

Объекты исследования Sample	Содержание мышьяка Arsenic content									
	Концентрация испытуемого раствора, мкг/л Test solution concentration, µg/L (RSD, %)	Органическая форма (oAs) Organic arsenic				Неорганическая форма (iAs) Inorganic arsenic (iAs)		Содержание общего		
		Элюат Eluate		Смыв 1 Flush 1			Смыв 2 Flush 2		мышьяка Total arsenic	
		мкг/л µg/L (RSD, %)	%	мкг/л µg/L (RSD, %)	%	ΣoAs %	мкг/л µg/L (RSD, %)	%	мкг/л <i>µg/</i> L	%
I; pH 4,2	543±69 (6,5)	425±31 (3,0)	78,3	91±20 (8,8)	16,8	95,1	17±4 (10,9)	3,1	533	98,2
I; pH 5,4		464±92 (8,0)	85,5	63±22 (9,1)	11,6	97,1	14±4 (16,1)	2,6	541	99,7
II, pH 4,0	297±40 (5,4)	207±28 (5,5)	69,7	58±19 (9,5)	19,5	89,2	47±4 (2,5)	15,9	312	105,1
II; pH 5,4		200±30 (9,4)	67,3	55±8 (6,0)	18,5	85,3	58±12 (10,0)	19,5	313	105,4
III; pH 4,4	111±16 (5,9)	80±15 (8,6)	72,1	28±5 (7,1)	25,2	97,2	1,4±0,4 (20)	1,3	109,4	98,6
III; pH 5,4		93±20 (8,7)	83,8	21±5 (9)	18,9	102,7	2±0,4 (20)	1,8	116	104,5
IV; pH 4,1	106±13 (5,0)	84±12 (5,3)	79,2	22±8 (10)	20,8	100,0	1±0,5 (20)	0,9	107	100,9
IV; pH 5,5		85±13 (5,9)	80,2	19±2 (4,1)	17,9	98,1	0	0	104	98,1

Примечание. БАД — биологически активные добавки к пище, RSD — относительное стандартное отклонение. **Note.** RSD, relative standard deviation.

испытуемого раствора, полученного после экстракции слоевищ ламинарии и БАД на их основе раствором 3% H_2O_2 (табл. 4). Так как значения рН модельных смесей и H_2O_2 близки к 4, измерения проводили при исходном значении рН для каждого образца и при рН близких к 5,5.

Из данных, представленных в таблице 5, следует, что стадия смыва картриджа раствором 0,5 М уксусной кислоты необходима для полного выделения органических соединений мышьяка. Можно отметить, что значения рН смеси, подвергающейся твердофазной экстракции, влияют на соотношение содержания oAs в элюате и смыве 1, при этом суммарное содержание oAs не меняется в диапазоне рН 4,0-5,5 с учетом неопределенности результатов измерения. Результаты определения iAs, полученные при различных значениях рН, также близки между собой. В целом общее содержание As, установленное в ходе твердофазной экстракции, соответствует его содержанию в испытуемом растворе независимо от рН исходной смеси. Таким образом, стадией нейтрализации смеси испытуемого раствора с 3% H_2O_2 до pH 5,5±0,5 можно пренебречь.

Сравнительный анализ содержания общего As и его неорганических форм в различных видах бурых водорослей семейства ламинариевых свидетельствует, что слоевища *L. saccharina* характеризуются меньшим содержанием общего As и большим содержанием его неорганических форм по сравнению с *L. japonica*. В БАД на основе

слоевищ ламинарии содержание органических и неорганических форм As существенно меньше, чем в исходном сырье, то есть уровень его контаминации соединениями As существенно снижается в процессе переработки.

Заключение

В результате проведенных исследований разработана простая и эффективная методика селективного количественного определения содержания органических и неорганических форм мышьяка в слоевищах ламинарии и продуктах на их основе методами твердофазной экстракции и масс-спектрометрии с индуктивносвязанной плазмой. Данная методика позволяет полностью выделять мышьяк-содержащие соединения из органической матрицы ламинарии исключительно раствором 3% пероксида водорода без использования соляной или азотной кислот. С применением этого экстрагента удается эффективно разделять органическую и неорганическую фракции мышьяка на этапе твердофазной экстракции без стадии нейтрализации испытуемого раствора. Разработанную методику рекомендуется использовать при оценке рисков негативного воздействия элементных контаминантов, попадающих в организм человека вместе со слоевищами ламинарии. По результатам работы в Федеральную службу по интеллектуальной собственности подана заявка № 2023102951 от 10.02.2023 на выдачу патента на изобретение.

ЛИТЕРАТУРА / REFERENCES

- 1. Подкорытова АВ, Рощина АН. Морские бурые водоросли перспективный источник БАВ для медицинского, фармацевтического и пищевого применения. *Труды ВНИРО*. 2021;186(4):156–72. Podkorytova AV, Roshchina AN. Marine brown algae perspective source of BAS for medical, pharmaceutical and food use. *Trudy VNIRO*. 2021;186(4):156–72 (In Russ.). https://doi.org/10.36038/2307-3497-2021-186-156-172
- 2. Семенова ЕВ, Билименко АС, Чеботок ВВ. Использование морских водорослей в медицине и фармации. Современные проблемы науки и образования. 2019;(5):118.
 - Semenova EV, Bilimenko AS, Chebotok VV. The use of seaweed in medicine and pharmacy. *Modern Problems of Science and Education*. 2019;(5):118 (In Russ.). EDN: OZNHEB
- 3. Choudhary B, Chauhan OP, Mishra A. Edible seaweeds: a potential novel source of bioactive metabolites and nutraceuticals with human health benefits. *Front Mar Sci.* 2021;8:740054. https://doi.org/10.3389/fmars.2021.740054
- Подкорытова АВ, Рощина АН, Бурова НВ. Водоросли-макрофиты прибрежных зон морей северного рыбохозяйственного бассейна: добыча,

- переработка, обоснование их комплексного использования. В кн.: *Инновационные направления интеграции науки, образования и производства*. Керчь; 2020. С. 271–6.
- Podkorytova AV, Roshchina AN, Burova NV. Algaemacrophytes of the coastal zones of the seas of the northern fishery basin: harvesting, processing, justification of their integrated use. In: *Innovative directions of integration of science, education and production*. Kerch; 2020. P. 271–6 (In Russ.).
- Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, et al. Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol. 2017;29(2):949–82. https://doi.org/10.1007/s10811-016-0974-5
- 6. Облучинская ЕД. Фитохимические и технологические исследования водорослей Баренцева моря. *Труды Кольского научного центра РАН*. 2020;11(4–7):178–98.
 - Obluchinskaya ED. Phytochemicals and technological study of the Barents Sea algae. *Transactions of the Kola Science Centre*. 2020;11(4–7):178–98 (In Russ.). https://doi.org/10.37614/2307-5252.2020.11.4.008
- 7. Shokina Y, Kuchina Y, Savkina K, Novozhilova E, Tatcienko K, Shokin G. The use of brown algae

- Laminaria saccharina in iodine enriched products aimed at preventing iodine deficiency. KnE Life Sci. 2022;2022:135–45. https://doi.org/10.18502/kls.v7i1.10115
- Luvonga C, Rimmer CA, Yu LL, Lee SB. Organoarsenicals in seafood: occurrence, dietary exposure, toxicity, and risk assessment considerations a review. J Agric Food Chem. 2020;68(4):943–60. https://doi.org/10.1021/acs.jafc.9b07532
- Molin M, Ulven SM, Meltzer HM, Alexander J. Arsenic in the human food chain, biotransformation and toxicology — review focusing on seafood arsenic. *J Trace Elem Med Biol.* 2015;31:249–59. https://doi.org/10.1016/j.jtemb.2015.01.010
- Zhao Y, Shang D, Ning J, Zhai Y. Arsenic and cadmium in the marine macroalgae (*Porphyra yezoensis* and *Laminaria Japonica*) forms and concentrations. *Chem Speciation Bioavailability*. 2012;24(3):197–203. https://doi.org/10.3184/095422912X13404690516133
- 11. Monagail MM, Morrison L. Arsenic speciation in a variety of seaweeds and associated food products. *Compr Anal Chem.* 2019;85:267–310. https://doi.org/10.1016/bs.coac.2019.03.005
- Kim M, Kim J, Noh CH, Choi S, Joo YS, Lee KW. Monitoring arsenic species content in seaweeds produced off the southern coast of Korea and its risk assessment. *Environments*. 2020;7(9):68. https://doi.org/10.3390/environments7090068
- 13. Хотимченко СА, Бессонов ВВ, Багрянцева ОВ, Гмошинский ИВ. Безопасность пищевой продукции: новые проблемы и пути решений. Медицина труда и экология человека. 2015;(4):7–14.

 Khotimchenko SA, Bessonov VV, Bagryantseva OV, Gmoshinsky IV. Safety of food products: new problems and ways of solution. Occupational Medicine and Human Ecology. 2015;(4):7–14 (In Russ.). EDN: UWALFB
- 14. Багрянцева ОВ, Хотимченко СА. Токсичность неорганических и органических форм мышьяка. Вопросы питания. 2021;90(6):6–17. Bagryantseva OV, Khotimchenko SA. Risks associated with the consumption of inorganic and organic arsenic. Problems of Nutrition. 2021;90(6):6–17 (In Russ.). https://doi.org/10.33029/0042-8833-2021-90-6-6-17
- 15. Абрамова ЛС, Гершунская ВВ, Козин АВ, Бондаренко ДА, Мурашев АН. Изучение токсичности мышьяксодержащих соединений, выделенных из бурой водоросли Saccharina japonica, на лабораторных животных. Труды ВНИРО. 2020;181:223–34. Abramova LS, Gershunskaya VV, Kozin AV, Bondarenko DA, Murashev AN. Study of toxicity of arsenic-containing compounds isolated from the brown algae Saccharina japonica in laboratory animals. Trudy VNIRO. 2020;181:223–34 (In Russ.).
- https://doi.org/10.36038/2307-3497-2020-181-223-234

 16. Banerjee M, Kaur G, Whitlock BD, Carew MW, Le XC, Leslie EM. Multidrug resistance protein 1 (MRP1/ABCC1)-mediated cellular protection and transport of methylated arsenic metabolites differs between human cell lines. *Drug Metab Dispos*. 2018;46(8):1096–105.
- https://doi.org/10.1124/dmd.117.079640

 17. Bartel M, Ebert F, Leffers L, Karst U, Schwerdtle T. Toxicological characterization of the inorganic and organic arsenic metabolite Thio-DMAV in cultured human lung cells. *J Toxicol*. 2011;2011:373141. https://doi.org/10.1155/2011/373141

- Leong F, Hua X, Wang M, Chen T, Song Y, Tu P, et al. Quality standard of traditional Chinese medicines: comparison between European Pharmacopoeia and Chinese Pharmacopoeia and recent advances. *Chin Med.* 2020;15(1):1–20. https://doi.org/10.1186/s13020-020-00357-3
- 19. Wrobel K, Wrobel K. Methodological aspects of speciation analysis in food products. In: De la Guardia M, Garrigues S, eds. *Handbook of Mineral Elements in Food.* John Wiley & Sons; 2015. P. 391–453. https://doi.org/10.1002/9781118654316.ch18
- 20. Hussam A, Alauddin M, Khan AH, Rasul SB, Munir AKM. Evaluation of arsine generation in arsenic field kit. *Environ Sci Technol*. 1999;33(20):3686–88. https://doi.org/10.1021/es9901462
- 21. Llorente-Mirandes T, Rubio R, López-Sánchez JF. Inorganic arsenic determination in food: a review of analytical proposals and quality assessment over the last six years. *Appl Spectrosc*. 2017;71(1):25–69. https://doi.org/10.1177/0003702816652374
- 22. López-García I, Briceño M, Hernández-Córdoba M. Non-chromatographic screening procedure for arsenic speciation analysis in fish-based baby foods by using electrothermal atomic absorption spectrometry. *Anal Chim Acta*. 2011;699(1):11–17. https://doi.org/10.1016/j.aca.2011.05.005
- 23. Raber G, Stock N, Hanel P, Murko M, Navratilova J, Francesconi KA. An improved HPLC-ICPMS method for determining inorganic arsenic in food: application to rice, wheat and tuna fish. *Food Chem.* 2012;134(1):524–32.
 - https://doi.org/10.1016/j.foodchem.2012.02.113
- 24. Cui S, Kim CK, Lee KS, Min HS, Lee JH. Study on the analytical method of arsenic species in marine samples by ion chromatography coupled with mass spectrometry. *Microchem J.* 2018;143:16–20. https://doi.org/10.1016/j.microc.2018.07.025
- 25. Santos CMM, Nunes MAG, Barbosa IS. Evaluation of microwave and ultrasound extraction procedures for arsenic speciation in bivalve mollusks by liquid chromatography inductively coupled plasma-mass spectrometry. Spectrochim Acta, Part B: At Spectrosc. 2013;86:108–14. https://doi.org/10.1016/j.sab.2013.05.029
- 26. Pétursdóttir ÁH, Gunnlaugsdóttir H, Krupp EM, Feldmann J. Inorganic arsenic in seafood: does the extraction method matter? *Food Chem.* 2014;150:353–9. https://doi.org/10.1016/j.foodchem.2013.11.005
- 27. Rasmussen RR, Qian Y, Sloth JJ. SPE HG-AAS method for the determination of inorganic arsenic in rice results from method validation studies and a survey on rice products. *Anal Bioanal Chem.* 2013;405(24):7851–7. https://doi.org/10.1007/s00216-013-6936-8
- 28. Круглякова УС, Багрянцева ОВ, Евстратова АД, Малинкин АД, Гмошинский ИВ, Хотимченко СА. Раздельное количественное определение органических и неорганических форм мышьяка в морепродуктах. Анализ риска здоровью. 2018;(2):112–8. Kruglyakova US, Bagryantseva OV, Evstratova AD, Malinkin AD, Gmoshinskii IV, Khotimchenko SA. Separate quantitative determination of organic and non-organic arsenic in sea products. Health Risk Analysis. 2018;(2):112–8 (In Russ.).
- https://doi.org/10.21668/health.risk/2018.2.13

 29. Rajaković LV, Todorović ŽN, Rajakovic-Ognjanovic VN, Onjia AE. Analytical methods for arsenic speciation

- analysis. *J Serb Chem Soc.* 2013;78(10):1461–79. https://doi.org/10.2298/JSC130315064R
- Jinadasa KK, Peña-Vázquez E, Bermejo-Barrera P, Moreda-Piñeiro A. Ionic imprinted polymer solidphase extraction for inorganic arsenic selective pre-concentration in fishery products before high-performance liquid chromatography — inductively coupled plasma-mass spectrometry speciation. J Chromatogr A. 2020;1619:460973. https://doi.org/10.1016/j.chroma.2020.460973
- 31. Staniszewski B, Freimann P. A solid phase extraction procedure for the simultaneous determination of total inorganic arsenic and trace metals in seawater: sample preparation for total-reflection X-ray

Вклад авторов. Все авторы подтверждают соответствие своего авторства критериям ICMJE. Наибольший вклад распределен следующим образом: В.М. Щукин — идея, концепция и дизайн исследования, анализ данных, изложенных в нормативных документах, поиск литературы; А.А. Ерина — проведение экспериментальных исследований методом масс-спектрометрии, сбор и систематизация данных; Ю.Н. Швецова — анализ, систематизация и обобщение экспериментальных данных; Е.С. Жигилей — пробоподготовка образцов, проведение экспериментальных исследований методом твердофазной экстракции; Н.Е. Кузьмина — интерпретация результатов исследования, написание текста рукописи.

Благодарности. Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00052-23-00 на проведение прикладных научных исследований (номер государственного учета НИР 121022400083-1).

Конфликт интересов. Н.Е. Кузьмина является членом редакционной коллегии журнала «Ведомости НЦЭСМП. Регуляторные исследования и экспертиза лекарственных средств». Остальные авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

- fluorescence. *Spectrochim Acta, Part B: At Spectrosc.* 2008;63(11):1333-7. https://doi.org/10.1016/j.sab.2008.08.018
- 32. Salgado SG, Nieto MAQ, Simon MMB. Determination of soluble toxic arsenic species in alga samples by microwave-assisted extraction and high performance liquid chromatography hydride generation—inductively coupled plasma-atomic emission spectrometry. *J Chromatogr A*. 2006;1129(1):54–60. https://doi.org/10.1016/j.chroma.2006.06.083
- Francesconi KA, Kuehnelt D. Determination of arsenic species: a critical review of methods and applications, 2000–2003. *Analyst*. 2004;129(5):373–95. https://doi.org/10.1039/B401321M

Authors' contributions. All the authors confirm that they meet the ICMJE criteria for authorship. The most significant contributions were as follows. *Victor M. Shchukin* elaborated the idea, concept, and design of the study, analysed the data presented in regulatory documents, and searched the literature. *Alina A. Erina* conducted mass spectrometry experiments, collected and collated data. *Yulia N. Shvetsova* analysed, systematised, and summarised experimental data. *Evgeniya S. Zhigilei* prepared samples and conducted solid-phase extraction experiments. *Natalia E. Kuz'mina* interpreted the study results and drafted the manuscript.

Acknowledgements. The study reported in this publication was carried out as part of publicly funded research project No. 056-00052-23-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. 121022400083-1).

Conflict of interest. Natalia E. Kuz'mina is a member of the Editorial Board of *Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation.* The other authors declare no conflict of interest requiring disclosure in this article.

ОБ ABTOPAX / AUTHORS

Щукин Виктор Михайлович

ORCID: https://orcid.org/0000-0001-9440-0950 Schukin@expmed.ru

Ерина Алина Андреевна

ORCID: https://orcid.org/0000-0001-7488-7204 erina@expmed.ru

Швецова Юлия Николаевна

ORCID: https://orcid.org/0000-0002-2125-6174 shvetsovajn@expmed.ru

Жигилей Евгения Сергеевна

ORCID: https://orcid.org/0000-0002-1637-9081

lismanes@expmed.ru

Кузьмина Наталия Евгеньевна, д-р хим. наук ORCID: https://orcid.org/0000-0002-9133-0835 KuzminaN@expmed.ru

Поступила 02.11.2022 После доработки 22.02.2023 Принята к публикации 07.03.2023 Online first 26.04.2023

Victor M. Shchukin

ORCID: https://orcid.org/0000-0001-9440-0950 Schukin@expmed.ru

Alina A. Erina

ORCID: https://orcid.org/0000-0001-7488-7204 erina@expmed.ru

Yulia N. Shvetsova

ORCID: https://orcid.org/0000-0002-2125-6174 shvetsovajn@expmed.ru

Evgeniya S. Zhigilei

ORCID: https://orcid.org/0000-0002-1637-9081 lismanes@expmed.ru

Natalia E. Kuz'mina, Dr. Sci. (Chem.)

ORCID: https://orcid.org/0000-0002-9133-0835 KuzminaN@expmed.ru

Received 2 November 2022 Revised 22 February 2023 Accepted 7 March 2023 Online first 26 April 2023